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SECTION I
SUMMARY

1. INTRODUCTION

This is the final report on the work in “complexity.
testability, and fault analysis of digital, analog, and
hybrid systems"” carried out on ONR Contract
N00014-78-C-0311. This work was performed by Drs. R. C.
Gonzalez and M. G. Thomason at the University of
Tennessee. Knoxville- and by Dr. B.M.E. Moret initially at
the University of Tennessee, Knoxville, and subsequently at
the University of New Mexico, Albuquerque, Other
individuals were also involved for short periods of time.
The research has produced significant theoretical and
practical results which have appeared in technical journals
and technical reports.

The research was divided into two major areas: discrete
mathematical descriptions of aspects of digital, analog, and
hybrid systems useful in the study of complexity and fault

-analysis; and techniques for measuring parameters to

...........

characterize certain aspects of such systemns. In this
summary section- we give an overview of the various results.
Sections II through VII contain compilations of the articles
and reports resulting from this work. The material in these
sections is organized in the same order as the discussion in
this summary section,

.......




2. DECISION TREES

Barly in this work, decision trees and equivalent
expressions were adopted as the discrete mathematical
representation of functions for detailed study. There is a
one~-to-one correspondence between a tree for a discrete
function and an expression for the same function; hence,

D one can select the representational form which is better
suited to the manipulation required in any specific case-
Por instance- a fault tree for a digital. analog, or hybrid
system is "a concept widely wused to represent the
interconnections of subsystems as a directed graph which
clearly illustrates the hierarchical decomposition into

® major subsystems, then minor subsystems, then individual
components; but the equivalent fault expression is often
easier to manipulate when one wants to determine the
criticality of a subsystem or estimate the total system's
reliability as based on subsystem or component-level
calculations.

The initial work on decision trees was carried out as Dr.
Moret's PhD research at the University of Tennessee and has
continued with a focus on the area of fault trees. The
major results are these four contributions:

i) a generalization of decision trees to simple
recursive functions through a process of composition which
allows functional as well as hierarchical decomposition of
systems, including systems with feedback;

ii) a characterization of the complexity of testing
certain classes of Boolean functions, which has implications
in logic design and programming;

C 1ii) a study of the "activity" of a variable as a
generalization of Chow parameters with close connections to
Boolean differences, which is a useful tool in assessing
subsystem importance and designing test sets;

< iv) an extension of Boolean difference techniques to
the analysis of time-dependent systems with applications to
common-cause analysis.

-",' o

:
--.-.
DR
..'-
"
5
~T

»
.
.
u e
.
.
0 s
oo
et
DAL
.
e
e
. <
.‘ !'_ »
- - *
\ o
l.‘ .
. B
. .
.

()
o
by
. P
o S B NN

Decision trees are a natural model of the sequential
C evaluation of discrete functions where, at each node, a
variable is evaluated and a decision (to output the
functional value or to look at another variable) is made.
Such a model is effective for Boolean functions ags well as
more general, multivalued functions because it is a compact
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representation with an inherent ordering of variables for
evaluation.

Since the number of tree forms for a given discrete function
has an exponential dependence on the number of intrinsic
variables. the complexity of optimizing decision trees with
respect to several criteria was examined in detail and
reported in Moret [1980] and Moret et. al [198la, 1981bl.
A specific measure on discrete functions. called the
activity of a variable. was defined and shown to be closely
related to the evaluation cost of decision trees for the
function [Moret et al. 1980]. The activity of a variable
is a generalization of concepts developed in the framework
of Boolean functions. such as Chow parameters and Boolean
differences (cf., Moret et al, [1980])), all of which are
valuable analytical tools in studies of the importance of
subsystems in the overall system operation and the
suseptability of total system failure to the failures of
individual subsystems.

The activity of a variable also finds application in system
testing. In particular. exercising those variables having
. the highest activities maximizes the probability of error
detection in systems with equally likely faults. Moreover.
the concept can be extended to sequential functions by
considering the 1long-term, steady-state distribution of
system states. 8o that tests can be designed to reflect
average or normal operational modes. Finally, the activity
is similar to previously used measures of subsystem
criticality or importance; however, the activity measure
readily generalizes to multi-valued models--a significant
advantage where analog and hybrid systems are concerned.

Some results were obtained for proper subsets of the Boolean
.ofunctions. It was shown that all symmetric and threshold
Boolean functions have worst-case (i.e., total variable)
testing complexity. Since these functions are commonly
encountered in fault modeling, 1logic design. and pattern
recognition- this result provides information useful in
these fields. The result appears in Moret et al, [1983]).

It should be noted that adopting decision trees rather than
more conventional forms of discrete functions led to a
unified framework in which several previously disconnected
results were seen to fit together. Dr. Moret's survey
article [Moret, 1982] has been used by practitioners in a
variety of fields, including engineering and scientific
disciplines, and has been cited frequently.
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3. PAULT TREES

The most recent work has concentrated on fault trees as a
special usaqe of decision trees as system models with
emphasis on reliability and testing. A digital. analog, or
hybrid system is modelled as a confiquration of basic
components. each of which is either working or faulty (as
defined by the value of a Boolean state variable): the
confiquration, in turn, is described by higher~level
subsystem functions. and ultimately by the overall system
function (the value of which is the "top event™ state in
that it indicates "system working®” or "system failed"). A
fault tree itself is a logic-operation realization of this
system function.

Such trees are widely used in areas in which very complex
systems must be analyzed, for example. in the aircraft and
nuclear power industries. However. as usually developed,
fault trees do not account for time-dependent system
reconfigurations or for non-binary component behavior (egq.,
partially working and satisfactory for some but not all,
configurations). 1In order to extend the applicability of
the fault tree concept, Moret and Thomason have extended an
idea of Thomason and Page [1976] in using time-dependent
Boolean differences for analysis of sequential fault
functions for systems which undergo a reconfiquration at
discrete points in time Initial work on the inclusion of
probabjlities was also performed so that estimates "of
long-run failure probabilities could be calculated for
appropriate assumptions of steady-state conditions and
independence of failure events.

This method also allows a study of arbitrary
subconfigurations in the total system. A characterization
of minimum and maximum test conditions has been developed
for the sensitization of the system to an arbitrary
combination of events in the subsystems. It is shown that
some fundamental results in stochastic process theory can be
applied to time-dependent systems with suitable transition
probabilities, These results provide a basis for the
qualitative and quantitative analysis of "common-causes" of
simultaneous failures in several subsystems.
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4. TESTING COMPLEXITY

The problem of developing test sets can be considered in two
stages: a stage in which potential tests are designed and
their results measured, and a stage in which the final set
of tests 1is selected. This second stage involves the
optimization of some criterion function and often reduces to
selecting the smallest possible number of tests in the final
collection, i.e., the "minimum test set problem." This
computationally intractable problem is NP-hard, as a result
of which manv researchers have have worked on suboptimal
strategies in the form of heuristic search methods.

The objective of the study on this contract was a
theoretical and practical evaluation of various suboptimal
strategies. Several minimization routines were run under
different conditions for comparisons of their growth in
complexity predicted by theory with the difficulties
actually encountered in solving real problems (Moret and
Shapiro [1982]).

.Characterizing several aspects of the suboptimal algorithms
required ' extensive experimentation. The outcome of over
three thousand test runs brought to 1light two encouraging
results. First- despite the theoretical prediction of
sharply increasing complexity., the coherence or
*individuality® of the real world problems caused their
complexity to increase only slowly with size. Second, the
experiments clearly showed that one of the algorithms was
far superior to the others for the range of problems
considered; this was in agreement with theoretical
predictions based on bounding methods that were developed in
the course of this contract,

Overall, this effort has contributed to a much better
understanding of the ™minimum test set problem" and its
various suboptimal solutions. In particular. the best
existing algorithm has been identified and characterized.
Well supported by intuition and empirical evidence. an exact
characterization of the best behavior of such algorithms has
been conjectured but as yet not proved; should it prove
true- the existing alogorithm would in fact be as good as
can be achieved.
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E S. OPTIMAL SOLUTION OF LINEAR INEOUALITIES

Linear inequalities are applicable in digital systems in the
. areas of threshold functions and pattern recognition.
- Although the solution of consistent inequalities is
; straightforward (e.g., by linear programming). relatively
i. little is known about the solution of inconsistent

inequalities. The f£first practical algorithm is this area
E was reported by Warmack and Gonzalez in 1973. These results
3 were generalized by Clark and Gonzalez [1981] as part of the
; work on this contract. The Clark-Gonzalez algorithm is a
: nonenumerative procedure guaranteed to £find all optimal
‘" o solutions to a set of inconsistent inequalities. (Finding

the solutions of consistent inequalities is a special case

of this method.) Bounds on the search carried out by the

algorithm were developed, and the method was shown to be

computationally superior to other methods (including the
, Warmack-Gonzalez algorithm) for finding minimum-error
c solutions.
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[ 6. MOMENTS OF THE INTERCLASS MAHALANOBIS DISTANCE

The Mahalanobis distance is a measure of similarity between
multivariate Gaussian populations. In terms of the work in
this contract. the Mahalanobis distance offers a robust
descriptor for characterizing multivariate measurements
performed in an analog system. In this context, the problem
can be formulated as a pattern recognition task whose
objective is to detect deviations from a normal mode of
operation. .

When treated as a random variable. the Mahalanobis distance
has a probability density function (PDF) that can be related
to the probability of error in classification (e.g..,
classification of normal vs. abnormal operation). When the
covariance matrices are equal. obtaining this PDF is
straightforward; however - the more general (and practical)
case involving unequal covariance matrices requires
complicated numerical integration techniques for determining
the PDF.

In many applications of multivariate data description. it is
of interest to compute the moments of the Mahalanobis
distance without having to estimate its underlying PDF as an
intermediate step. In a recent paper (Gonzalez and Wagner
{1983]) it was shown that the moments of the interclass
Mahalanobis distance between two multivariate groups of data
(also called classes) can be expressed in a simple
polynomial form. The nth moment is expressible as a
polynomial of order n whose variable depends upon the mean
vectors and eigenvalues of the covariance matrices of the
two populations. A closed form solution is also given for
computing the coefficients of the expressions. The relative

» simplicity of these results has important implications in
terms of implementation in a digital computer or dedicated
hardware-




7. SEMI-INVARIANTS OF THE INTERCLASS MAHALANOBIS DISTANCE

An alternative to the technique discussed in the previous
section 1is to compute the semi-invariants (which do not
require that the eigenvectors be known) and then obtain the
moments from the semi-invariants. A new approach for
obtaining the semi-invariants was recently reported by

4 Gonzalez and Wagner [1984]. The semi-invariants are given
directly in terms of the mean vectors and inverse covariance
matrices. It is well known that the moments and
semi-invariants are related by expressions which, though
theoretically simple. are quite inefficient in terms of
computation. A new, iterative algorithm that is easily
implemented on a computer was also reported in the same
paper.
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‘The Activity of a Variable and Its Relation
to Decision Trees

B. M. E. MORET, M. G. THOMASON, AND R. C. GONZALEZ
University of Tennessee

The construction of sequential testing procedures from functions of discrete arguments is a common
problem in switching theory, software engineering, pattern recognition, and management. The concept
of the activity of an argument is introduced, and a theorem is proved which relates it to the expected
testing cost of the most general type of decision trees. This resuit is then extended to trees constructed
from relations on finite sets and to decision procedures with cycles. These results are used, in turn, as
the basis for a fast heuristic selection rule for constructing testing procedures. Finally, some bounds
on the performance of the selection rule are developed.

Key Words and Phrases: activity, decision diagrams, decision tables, decision trees, expected testing
cost, heuristic selection, identification procedure, pattern recognition, recursiveness, sequential testing
procedure, software engineering, switching theory

CR Categories: 3.63, 3.7, 4.33, 4.34, 4.6, 5.39, 6.1, 8.3

--1. INTRODUCTION

A common problem in switching theory, software engineering, pattern recogni-
tion, and management is the construction of sequential testing procedures (also
called decision trees or decision programs) from a given function of discrete
arguments [1, 5, 9, 11, 13, 16, 20]. The problem is to select from the numerous
available trees one which is an optimal tree representation with respect to some
criterion. In particular, it is often desired to select a tree which has the smallest
expected testing cost, that is, a tree such that the average cost of determining a
value of the function (by testing some of the variables) is minimal. Variants of
this problem have been studied by many researchers, who have provided search
algorithms to find the optimal tree(s) [4, 7, 10, 12, 15] or proposed heuristic rules
for constructing suboptimal trees [3, 5, 6, 14, 17, 19].

In this paper we introduce the concept of activity of a variable and prove a
theorem relating it to the expected testing cost of decision trees with costs and
probabilities. This result is then extended to trees constructed from relations on
finite sets and to decision procedures with cycles (corresponding to recursive

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was supported by the Office of Naval Research under Contract N00014-78-C-0311.
Authors’ addresses: B.M.E. Moret, Department of Computer Science, University of New Mexico,
Albuquerque, NM 87131; M.G. Thomason, Department of Computer Science, University of Tennessee,
" Knoxville, TN 37916; R.C. Gonzalez, Department of Electrical Engineering, University of Tennessee,
Knoxville, TN 37916.
© 1980 ACM 0164-0925/80/1000-0580 $00.75
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Activity of a Variable and its Relation to Decision Trees . 581

functions). This provides the basis for a fast heuristic selection rule, which is a
generalization of criteria proposed in (4] and [15]. Finally, we examine certain
conditions under which the rule performs optimally and give some bounds on its
behavior. :

2. PRELIMINARIES

We are given a (partial) function of n discrete-valued variables, f(x,, ..., X.);
each variable x, can take on exactly m; values, m; > 1, and the determination of
its value incurs cost ¢,. A discrete probability distribution is also specified on the
[1 ™1 m. points of the variables’ space (combinations of variable values which do
not belong to the inverse image of fdo not necessarily have zero probability); the
probability of a point is denoted p(x,, ..., x,). It is noted that the probability
p(x, = k) that variable x; will take on value & can be computed by

plx.=k) = Zl--- f‘ f fp(xu.....x.-n,k.x...,..-.x.). (3)]
ne o=t By =1 L)

Definition 1. If f(x,, ..., xa) = constant, then the decision tree for fis a leaf
labeled “constant”; otherwise, for each x;, f has decision tree(s) composed of a
root labeled “x,” and m; decision subtrees, corresponding to the m, subfunctions
ﬂx‘-h, 1= k =m,.

If variables xa,, . . ., xa,, in that order, are tested along path P., yielding values
U1, .., Un, and leading to leaf as, then the probability of reaching leaf a. is the
sum of the probabilities of all combinations of variable values leading to that leaf.
Using (1) above, this can be written as

plax) = [] p(xa, = v).

In following path P, we test n. variables for a total cost of

CPy =73 cn

-l
Thus the expected testing cost of the tree T is the quantity
C(T) = ¥ plas)-C(Ps),

[
where the sum is taken over all leaves ax of T
Any internal node of a decision tree T is associated with a subfunction of T.
That subfunction itself has a probability which is the sum of the probabilities of
the combinations of variable values included in the subfunction. This is equal to
the probability of reaching the said internal node or, equivalently, to the sum of
the probabilities of the leaves of the subtree rooted at that internal node. In the
following section we shall be interested in the subfunction resulting from a
combination of n — 1 values, that is, the case in which the values of all variables
but, say, x, are fixed, resulting in the selection of an m;-tuple of possible combi-
nations—the m, values of the unspecified variable x,.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 4, October 1980.
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582 . B. M. E. Moret, M. G. Thomason, and R. C. Gonzalez

p=0.25 p=0.3 p=0.15

p=0.1 p=0.2 o ]
Fig. 1. A sample decision tree for Example 1. LI

Example 1. Let f be a partial function of three binary variables, f: {0, 1}* —
(1, 2, 3), given by
0,0,0) — 3, (1,0,0) = 2,
0,1,00—1, 1,0,1) - 2,
0,1,1) — 3, (1,1,0) = 1.

The costs are ¢; = 0.5, c; = 0.68, and c; = 0.25, and the probability distribution is
specified by

p(0,0,0) =010, p(1,0,0) = 0.25,
p(0,0,1) =005  p(l,0,1) = 0.05,
p(0,1,0) =020, p(l,1,0)=0.15,
p(0,1,1) =020, p(1,1,1) =0.00.

A possible decision tree for this function is illustrated in Figure 1, together with
the probabilities of the leaves. The expected testing cost of that tree is

C(T) =0.1.(0.5 + 0.25 + 0.68) + 0.2.(0.5 + 0.25 + 0.68)
+0.25-(0.5 + 0.25) + 0.3-(0.5 + 0.68) + 0.15-(0.5 + 0.68) = 1.1475. O

3. THE ACTIVITY OF A VARIABLE

Considering the m,-tuple of combinations mentioned at the end of Section 2, we
distinguish two cases: .

(i) two of the m, combinations are mapped to distinct values by f;
(ii) no such two combinations can be found.

In the first case, variable x, must be tested in order to distinguish all values of the
function; in the second case, this is not necessary, although it may be done in a
particular tree, either as a redundant test or because at least one variable did not
belong to the inverse image of f and has been arbitrarily mapped to a value
distinct from the image of the other combinations. Thus, the a priori probability
p/ (x,) that variable x, will be needed in testing all the values of f (i.e., the
probability that f will be sensitized to x,) is equal to the sum of the probabilities
of all the m,-tuples satisfying case (i) above; conversely, the a priori probability
pr(x,) that x, will be useless is equal to the sum of the probabilities of the
remaining m.-tuples, those satisfying case (ii).
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. The same reasoning is easily adapted to a subfunction f by normalizing the
probabilities with the probability of /. For any x, and /, pj (x)) + p;(x) = 1.

Definition 2. The activity of variable x, with respect to subfunction fis de-
fined as the quantity

) aj(x,) = ¢, -p}(x). e

Definition 3. The loss of variable x, with respect to subfunction f is defined
as the quantity

l;(x:) = - af(x,).

b The activity of a var.able is a measure of how much influence a variable has on
the determination of a function’s values. A related concept, known as Chow
parameter [18], is discussed in [2] and [4]; when all costs are unity and all variable
combinations equally likely, the activity of a variable with respect to a completely
specified Boolean function of n variables reduces to the Chow parameter of the
variable divided by 2",
4 The loss of a variable x is a8 measure of the wasted decision power associated
with the choice of x as the root of the decision tree. This is intuitively obvious,
since such a choice results in testing the variable with probability 1, while the a
priori probability of needing x was p; (x).

Example 2. The various quantities defined above are computed for the
function of Example 1 and are listed below.

Pr(x1) = 0.35, P/ (x2) = Q.7, P/ (xs) = 0.4,
as(x,) = 0.175, ar(x;) = 0.476, ar{x;) = 0.1,
I (x;) = 0.325, l(x2) =0.204, I(x;) = 0.15. O

The following theorem establishes the relationship between activity, loss, and
expected testing cost of decision trees. The proof technique is derived from [4],
where a simplified version of this theorem using Chow parameters was proved for
completely specified monotone Boolean functions of uniformly distributed vari-
ables with unity costs.

THEOREM 1. The expected testing cost C(T) of a decision tree T for the
function f(x., ... X.) can be expressed as

C(T) = z‘ a(x,) + ;:p(fwﬂﬁ.). 2

where the second sum is taken over all internal nodes B and f refers to the
subfunction associated with Ba.
Remark. This theorem says that the expected testing cost of a decision tree

is composed of a fixed “overhead” (the first sum) and a variable amount of “loss”
(the second sum) which depends on the structure of the tree.

- PRooF. The proof is by induction on n, the number of variables. For n = 1,
the basis is easily verified: the variable space is just an m-tuple, and there are
only two possible tree structures. Assume that the theorem holds for all functions
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of up to and including n — 1 variables, and let f be a function of n variables.
Choose x, to be the root of T. This determines m, subfunctions, each of n — 1
variables, so that the inductive hypothesis applies and for each subfunction f,
J=1,..., m, we have o

C(T)) = T a(x) +3 FIFARAT: AR
A

where the second sum is taken over all internal nodes 8, of T,. But C(T) = ¢, +
Y= p(f)-C(T;), and after substituting and simplifying, we obtain

~, L] -
CT=ci—llx)+ Y (P(f}) . .}_: af,(xn)) + ;p(f)-li(ﬂn). 3)

ots
where the last sum is taken over all internal nodes 8 of T. But we know that
i = l(xi) = as(x:)

and

,i, ar(x;) = as(x)) + ,.E, (p(l})- é. a/,(x.)).
Substitution of these two equalities in (3) yields
C(T) = § artx) + Lot -4(B),
where the second sum is taken over all internal nodes 8, of 7. O

COROLLARY 1. The expected testing cost of any decision tree T for the
function f(x,, . .. xx) having x, as root is bounded by

Yo=C(M=hx)+ T aix).
1 /1

This corollary, in simplified form, was proved in [15] and is implicit in [4]: Both
references use it as the basis for a branch-and-bound search algorithm to find a
tree that is optimal with respect to the expected testing cost.

These results stress the importance of the sum of the activities of the variables
of a function as a representation-independent measure of the cost incurred in
determining the values of that function. This motivates the following definition.

Definition 4. The intrinsic cost I( f) of the function f(x,, . .. x.) is defined as
the quantity
I(f)= 21 ar(x,).
Example 3. Using the values of activity computed in Example 2 for the
function of Example 1, we obtain the intrinsic cost of f,

I(f) = as(x,) + as(x2) + ar(x3) = 0.175 + 0.476 + 0.1 = 0.751.
ACM Tr: jons on Progr: ing Languages and Systems, Vol. 2, No. 4, October 1980.
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»
L =0.0681
0=0.55 |
\20.0
» p=0.3
[ ] Fig. 2. The tree of Figure 1 with node losses and probabilities.

For the tree of Figure 1 we compute the loss and probability of each internal
node to obtain the values shown in Figure 2. The sum of these losses, weighted
by the node probabilities, and of the intrinsic cost is

4 (0.325-1) + (0.681.0.55) + (0.075-0.45) + (0.0-0.3) + 0.751 = 1.1475,

the computed expected testing cost of the tree. Corollary 1 indicates that any
tree for f having x, as root will have a minimum cost of 0.751 + 0.325 = 1.076;
similarly, any tree with root x; will have a minimum cost of 0.751 + 0.204 = 0.955,
while trees rooted in x; have a lower bound of 0.751 + 0.15 = 0.901. O

® 4. EXTENSION TO RELATIONS

We extend the definitions of activity and loss to relations on finite sets. This is of
particular interest in the case of interdependent functions which must be repre-
sented by a single tree (as in [5]).
A relation R might specify no more than one output for each input combination,
in which case it is a (partial) function. R may, however, specify more than one
o output, in which case we assume that we can arbitrarily decide to specify any
particular output or leave the choice open. It is also assumed that an unspecified
entry (a “don’t care”) is in fact related to the whole output set, so that any one
output value can be selected for such input combination. We then extend the
definitions of activity, loss, and intrinsic cost in the obvious way by noting that
a variable is needed to differentiate the values of an m.-tuple if and only if the
< intersection of the output sets specified by R for the m: components is empty. It
is readily verified that all results previously stated for partial functions remain
valid for relations.

Example 4. Consider the relation R from the input set {0, 1)* x {0, 1, 2) to

the output set & = (a, b, ¢, d), where all three variables have unity cost and the

< relation and the probability distribution are given in Figure 3. Since all variables
have unity costs, p;(x,) = as(x,), so that a,(x;) = 0.35, a;(x;) = 0.2, and a,(x;) =

0.6. The intrinsic cost of R is I(R) = 0.35 + 0.2 + 0.6 = 1.15. Choosing x, as the

. root for a decision tree results in a lower bound on the cost of 1.15 + (1 — 0.6) =

1.55. A possible decision tree T rooted in x; is shown in Figure 4, together with

ACM Transactions on Programming Languages and Systema. Vol. 2, No. 4, October 1980.
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Relation Probabilities

nxe 0 o1 n 10 i 0 o 1 10
X3 X3

0 Q | ajal abe 0 |o005({ 010 { 020 0.10

1 [ bdl b bed 1 [o010] 010 005! 0.10

2 [ d blel ¢ 2 [000] 00s | 010] 005

Fig. 3. The relation and its probability distribution for Example 4.

Fig. 4. A decision tree with node losses for Example 4.

the losses of its nodes. Its expected testing cost is C(T) = 1.15 + (0.35-9) = 1.75,
and it is in fact one of the optimal trees for R. O

5. EXTENSION TO RECURSIVE FUNCTIONS AND RELATIONS

As a further extension of the foregoing concepts, we consider the case of a
recursive function or relation, that is, a relation which, for certain input combi-
nations, does not specify output values but calls for the evaluation of some
relation, possibly itself. It is assumed that the same tree structure is used for all
evaluations of a given relation and that an unspecified entry is not replaced by a
call to a relation, but only by values.

The following discussion is restricted to immediate recursive relations, that is,
those which do not call for the evaluation of any other relation than themselves.
This does not diminish the generality of the development, as a hierarchy of
several different relations can be analyzed in parts by considering each relation
separately and then merging the results using the probabilities of each relation
and of the recursive calls. Such an analysis is demonstrated in Section 6 by an
example.

Given an immediate recursive relation, it is possible under the assumptions to
compute the probability e that an evaluation will be made without recursive calls.
If e is 1, the relation is not recursive; if e is 0, then the relation will never yield a
value but will keep issuing recursive calls ad infinitum.

A first question about such relations concerns an upper bound on their testing
cost. Such a bound is set by Corollary 1 for nonrecursive relations as the sum of
the testing costs of the variables, but can evidently be passed by recursive
relations. The following proposition provides the answer.

ACM Transactions on Programming Languages and Systema, Vol. 2, No. 4, October 1980.
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PRrOPOSITION 1. Let R be an immediate recursive relation on n variables
T X1y ..oy Xa Witk cOSIS 1, . . ., Ca, and let e be as above; then the expected !esting
cost of R is no larger than (1/e)- Y., c..

ProoF. The probability of a recursive call occurring in any evaluation is
1 — e. At worst, an evaluation results in the test of all variables, for a cost of
Y1 ¢.; thus the votal cost is no larger than

h £ (0mm5e)-(0) e .

A decision procedure for a recursive relation is an infinite tree that can also be
represented as a diagram with cycles, each cycle leading back to the root of a
subdiagram. In the case of immediate recursive relations, all cycles lead back to
the root of the diagram. We can compute the probability that the relation will
take on a specific value by solving a simple linear equation, subject to the
convention that entries for which several values are specified are set to the
specific value under consideration wherever possible.

The notion of activity of a variable is generalized to immediate recursive
relations as follows.

(i) If an m,-tuple does not include a recursive call, we count its contribution in
the usual way.

(ii) If one or more recursive calls are included, the contribution is the probability
of the m.-tuple times the testing cost of the unspecified variable times the
probability that the m,-tuple will be mapped to more than one value.

We call this quantity the tree activity; the corresponding loss, the tree loss, is the
testing cost minus the tree activity. The same quantities multiplied by 1/e will be
referred to as diagram activity and diagram loss.

THEOREM 2. Let R be an immediate recursive relation, and let a decision
procedure for R be represented by a diagram D and an infinite tree T. The
expected testing cost of the procedure, C(D) = C(T), is equal to

(i) the sum of the diagram activities and of the diagram losses taken over all
internal nodes of the diagram, or

(ii) the sum, taken over the infinite tree, of the tree activities and of the tree
losses.

Remark. The sum of the diagram activities is called the intrinsic cost of the
relation, I(R).

ProoF. The proof relies on the original theorem for nonrecursive functions
and on simple considerations on the series 1, 1 — e, (1 — e)?, (1 — ¢)°, ... and its
sum, 1/e. If we replace all recursive calls in D by leaves, the cost of the resulting
tree is the sum of the tree activities and the tree losses taken over all internal
nodes of the tree. Introducing recursion results in a series of invocations, the
probabilities of which are described by the series (1 — e)*. O

Corollary 1 is similarly extended.
ACM Transactions on Progr ing Lang and Sy Vol. 2, No. 4. October 1980
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Fig. 5. The relations for the example with their probabilities.

6. AN EXAMPLE

As mentioned above, the results can be extended to recursive hierarchies of
relations, subject to our two restrictions. The following example shows how
systems of relations are analvzed part by part.

Consider a situation in which a monitoring program must periodically evaluate
several system variables. If the sampled values point to a satisfactory status, the
program waits for a specific period of time and examines the variables again;
otherwise, either a malfunction is identified and the program takes some action
and stops, or further analysis is required and some additional variables are
examined to determine whether the program should resume its normal cycle or
take some action and stop. The first part of the examination (the normal cycle)
is described by the relation R1, which includes calls both to itself and to the
second relation R2 (the exception cycle), which includes calls to R1. In this
example, R1 is a relation between (0, 1)? x {0, 1, 2} and the set of actions =
{a, b}, and R2 is a relation between {0, 1)* and £, as specified in Figure 5.

The analysis treats R1 and R2 separately and considers a structure from which
all recursive calls have been eliminated. Once this structure has been analyzed by
the methods developed above, the results are put together using p(R2), the
probability that R2 is called from R1 in a given evaluation. Recursion is then
taken into account by multiplying the results by 1/e, where e is the overall
probability that no recursion will be needed.

We have p(R2) = 0.01 + 0.01 + 0.01 = 0.03; similarly, p(R1), the probability
that R1 will be called in an evaluation of R2, is 0.25 + 0.25 = 0.5. The probability
that no recursive call will be necessary is

e =001 + 0.01 + 0.01 + p(R2)-(0.1 + 0.1 + 0.1 + 0.05 + 0.05 + 0.1) = 0.045,
80 that 1/e = 22.2. We can then compute the maximum probabilities of yielding
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 4, October 1980
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aorbas

p(R1 = a) = [001 + 001 + p(R2)-(0.1 + 0.1 + 0.1 + 0.05)]- (1/e) = 067,
P(R1 = b) = [0.01 + 0.01 + p(R2)-(0.1 + 0.05 + 0.05)]-(1/e) = 0.57,
’ p(R2=a) = 0.1 + 0.1 + 0.1+ 005 + p(R1)-p(R1 = a) = 0.68,
p(R2=5) = 0.1 + 0.05 + 0.05 + p(R1)-p(R1 = b) = 0.48.

The tree activities are

api(x;) = 9-(0 + 0+ 0.02-p(R2 % b) + 0 + 0.02.p(R2 » a) + 0) = 0.148,
ari(xz) = 9-(0 + 0.06.p(R1 % a) + 0.02-p(R2 % b) + 0 + 0.05 + 0) = 0.716,
] ari (x3) = 4.5-(0.76-p(R1 % ) + 0.07 + 0.07 + 0.1) = 2.524,

Similarly, we get ar2(y;) = 10, ar2(yz) = 10.15, and arz(ys) = 14.78. Thus I, the

intrinsic ‘cost of the relations, is the sum of the tree activities of R1 and the tree

activities of R2 (weighted by p(R2)) times 1/e: _
I={0.148 + 0.716 + 2.524 + p(R2)-(10 + 10.15 + 14.78)]-(1/e} = 98.575 .

4 The upper bound on the cost is
Conax = [9 + 9 + 4.5 + p(R2)-(50 + 45 + 36)]-(1/e) = 587.3.

Figure 6 describes a possible decision diagram D for the relations; the diagram
losses and probabilities appear beside each internal node. The lower bound for

the cost of this diagram is the sum of the intrinsic cost and of the diagram loss
@ of x3:

Ib(D) = 98.575 + 43.91 = 142.486.
The cost of the diagram can be computed from Theorem 2(i):
C(D) = 98.575 + 1.43.91 + 0.11-73.93 + 0.04.148.8
o | +0.02.137.7 + 0.02.97.7 + 0.02.200
+ 3.(0.01-471.5 + 0.007.677.7 + 0.003.370.370) = 197.
This can also be obtained by solving the diagram’s cost equation:
C(D) = 1.4.5 + 0.85-C(D) + 0.11.9 + 0.04-9
c +0.09-C(D) + 0.02-9 + 0.02-9 + 0.02.9
+ 3.(0.01.36 + 0.007-45 + 0.003-50 + 0.005-C(D)),
yielding (1 ~ 0.955). C(D) = 8.865, so that C(D) = 8.865/0.045 = 197.

7. CONSTRUCTING DECISION PROCEDURES

The construction of decision procedures with minimal expected testing costs is,

in many cases, a search problem; that is, no algorithm has yet been devised that

does not exhibit an exponential behavior in at least some cases. In particular, in

- the case of binary identification [7], the problem has been shown to be NP-

" complete [8]. This leads to a search for efficient rules for constructing suboptimal
procedures.

As noted earlier, the loss /;(x,) is an approximate measure of the importance of

not locating x, at the root of the subfunction £ Indeed, /i(x,) satisfies all the
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(b)

7 Fig. 7. (a) The tree constructed by the rule. (b} The optimal tree.

requirements set forth in [6] for a selection criterion; that is,

(i) if a variable is necessary to distinguish all of the m,-tuples it forms, then its
activity is equal to its cost, so that its loss is null and it will be tested first
(this is an optimal strategy, as can easily be shown [6]);

(ii) if a variable is never needed, that is, if the relation does not intrinsically
depend on that variable, then its activity is null and its loss equal to its cost;
this condition is easily detected and the variable discarded, unless all other
variables have the same status and the relation still specifies at least two
distinct values;

(iii) the loss is directly related to the number of m,-tuples with equal components
(“dash” entries in the decision tables discussed in [6]).

This leads to the following rule for local optimization, a generalization of the
branch-and-bound criteria used in [4] and [15].

Rule. When developing the decision tree for the subfunction £, choose as the
root the variable with the lowest loss, /;. In case of a tie, choose the variable with
the lowest cost. If a tie subsists, choose any of the variables.

In the example of Section 6, the application of the above rule would result in
the diagram of Figure 6, which is optimal in this case. However, the rule does not
always result in optimal diagrams. In Example 1 we had //(x,) = 0.325, l;(x;) =
0.204, I;(xa) = 0.15; thus x; would be chosen as the root. Continuing in this
manner, we would get the tree of Figure 7a with an expected testing cost of 1.051,
but the optimal tree is that shown in Figure 7b, with an expected testing cost of
1.0425. Thus the tree constructed by the rule is 1.0425/1.051 = 0.99 optimal. A
conservative estimate can always be made by substituting the smallest lower
bound (as obtained from Corollary 1) for the unknown minimal cost. In the above
S example, this yields an estimate of 0.901/1.051 = 0.86.

8. DISCUSSION OF THE SELECTION RULE

An important advantage of the rule is its simplicity; compared to others [3, 6, 14,
17] it requires a minimum of computations. It is also more general, since it applies
to any simple recursive or nonrecursive hierarchy of relations with costs and
¢ probabilities.

ACM Transactions on Programmung Languages and Systems, Vol. 2, No. 4, October 1980
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Moreover, the rule is optimal in several cases. As previously noted, it will
always lead to the selection of a totally necessary variable if any such variable
exists; such a choice was seen to be optimal. We also have the following result.

ProrosITION 2. For any recursive relation on two variables, the selection
rule constructs optimal diagrams.

Proor. Follows immediately from the fact that the lower bound, as computed
from Corollary 1, is the exact cost of the diagram. O

~ Our previous example showed that this result does not hold for functions of
three or more variables.

A more important question is how bad the selection can be. The following
example illustrates the worst case for completely specified Boolean functions with
unity costs. )

Let f be the Boolean function f = x, + ®.;x,, where & denotes summation
modulo 2, and assume the following probability distribution:

" (i) Each point satisfying x,- ®-2x, = 1 has probability v-¢, for y<ly=1l
(ii) Each point satisfying x, = 0 has probability ¢.
(iii) All other points have probability a = 2’ — (y + 2)-¢.

Then we get as(x1) = 2"*.(y + 1)-eand a/(x,) = 2""'.¢ for n = i = 2, so that /(x,)
< l;(x,). The two subfunctions resulting from the choice of some x,, i % 1, as the
root are again of the form x, + ©x,, so that the trees constructed by the rule test
x; last (on half the branches) and have cost C(T,) = n — 1 + 2""%.(y + 1) .¢, while
the optimal trees, rooted in x;, have a cost of C(T,) =1 + (n ~ 1):2"'.¢. (The
case n = 4 is illustrated in Figure 8.) Thus, if € « 1 (e.g., if € = 27*" for some
k > 1), the asymptotic ratio of costs becomes C(T,)/C(T,) = n — 1.

By letting every point satisfying ¥7-@;.,x, = 1 be mapped to a recursive call,
we obtain the worst case for recursive Boolean functions. The best diagram, D.,
has a cost of [1 + (n —~ 1)-2""".¢€]/(1 — 2""%.¢), while the rule-constructed diagram,
D, has a cost of n/(1 — 2"~*.¢); thus the asymptotic ratio C(D,)/C(D,) becomes
approximately n for small e. That both recursive and nonrecursive cases yield the
same worst case, O(n), is due to the fact that the recursive factor 1/e is
independent of tree structure and is factored out.

The rule can construct arbitrarily bad trees; however, in the above example the
lower bound on the cost of the treesislb(f) = 1 + (n — 2).2" e + 2" %.(y + 1)-
€, 50 that C(To) = Ib(f) = 2""%.(1 — y).€ = 0. Therefore, we could have detected
at an early stage that the trees constructed by the rule were costing much more
than the original lower bound and revised the selection. This is not to say that
the lower bound as obtained from Corollary 1 remains arbitrarily close to the
cost of the optimal trees. It is easy to construct a binary identification problem
(7] with n variables of unity cost and 2"~ equally likely objects, so that the lower
bound is always 1 while the optimal cost is n —~ 1; Figure 9 illustrates such a
problem for three variables.

The determination of a general upper bound for the worst trees constructed by
the heuristic rule, as well as for the lower bound obtained from Corollary 1, is an
object of present study.
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(b)

probabilities: (a) The optimal tree, 7T..

{b) The tree constructed by the rule, 7,.

()

Fig. 8. The two trees for the case n = 4, with their leaf
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XX
X3

0 0 1 10

0 1 2
1 3 4

Fig. 9. An identification problem with three variables and four objects.

9. CONCLUSION

We have introduced the concept of the activity of a variable, a global measure of
the relevance of a variable in determining the values of a relation on discrete
arguments. We have proved a theorem detailing the relationship of this measure
to the expected testing cost of the relation. Finally, we have used this result to
develop a heuristic procedure for the fast construction of suboptimal decision
diagrams and have indicated some bounds on its performance.

The applicability of these results to recursive functions and decision diagrams
with cycles should provide a basis for further developments in fault analysis by
allowing sequential testing of time-related processes, as well as by supplying a
new modeling tool. Other areas in which these results may find applications
include pattern recognition, database theory, and switching theory.
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Decision Trees and Diagrams

BERNARD M. E. MORET
Department of Computer Science, The University of New Mexico, Albuquerque, New Mexico, 87131

Decision trees and diagrams (also known as sequential evaluation procedures) have
widespread applications in databases, decision table programming, concrete complexity
theory. switching theory, pattern recognition, and taxonomy—in short, wherever discrete
functions must be evaluated sequentially. In this tutorial survey a common framework of
definitions and notation is established, the contributions from the main fields of
application are reviewed, recent results and extensions are presented, and areas of
ongoing and future research are discussed.

Categories and Subject Descriptors: B.6.1 [Logic Design}: Design Styles; B.6.3 [Logic
Design): Design Aids—switching theory; D.1.m [Programming Techniques]:
Miscellaneous; F.2.2 [Analysis of Algorithms and Problem Complexity):
Nonnumerical Algorithms and Problems—computations on discrete structures; G.2.2
[Discrete Mathematics]: Graph Theory—trees; H.2.4 [Database Management]:
Systems—query processing, 1.2.8 [ Artificial Intelligence]: Problem Solving, Control
Methods and Search; 1.5.1 [Pattern Recognition]: Models; 1.5.2 [Pattern Recognition}:
Design Methodology; J.3 [Computer Applications]: Life and Medical Sciences—
biology; health

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Atomic digraph, binary identification, Boolean graph,
decision program, decision table, diagnostic key, diagnostic table, evaluation, exhaustive
function, feature selection, heuristics, hierarchical classifier, multiplexer network,
multistage testing, NP-complete problem, sequential evaluation procedure, table splitting,
taxonomy, test selection

INTRODUCTION ing theory [LEES9, THAYS1a], and analysis

of algorithms [WEID77]. More recently,

---------

SRR R RN

A decision tree or diagram is a model of the
evaluation of a discrete function, wherein
the value of a variable is determined and
the next action (to choose another variable
to evaluate or to output the value of the
function) is chosen accordingly. Decision
trees find many applications in decision
table programming (SiLB71, Pooc74,
ME71277], databases {[WoNG76, HANA7T7),
pattern recognition [Haus75, BELL78), tax-
onomy and identification [JARD71,
Mors71, GARE72a, PAYRS80, WILL80), ma-
chine diagnosis [KLET60, CHAN70), switch-

they have been proposed as implementa-
tion-independent models of discrete func-
tions with a view to the development of
new testing methods [AXER79, MORES1a)
and complexity measures [MORES0a].
Owing to this broad applicability, results
about decision trees are dispersed through-
out the literature in fields such as biology,
computer science, information theory, and
switching theory; moreover, there is no
common notation or set of definitions.
Therefore this article begins by establishing
a framework of notation and definitions
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date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
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that introduce decision trees and diagrams
and the various measures associated with
them. Particular attention is paid to the
problem of constructing decision trees and
diagrams from function descriptions and
evaluating their efficiency. The complexity
of such constructions is detailed, and reper-
cussions on circuit or program design ana-
lyzed. A survey of the main fields of appli-
cation and related results follows. Recently
proposed extensions (to include diagram
composition and recursion) and applica-
tions (e.g., to system testing) are then dis-
cussed. The article concludes with an as-
sessment of known results and suggestions
for future research.

The emphasis throughout this exposition
is on Boolean functions, since they find
many more applications and are more read-
ily understood than general discrete func-
tions. The presentation alternates formal
exposition, examples, and discussion; com-
plex proofs are avoided (the reader will find
them in the references), and the mathe-
matical content is kept to the minimum
necessary for clarity and conciseness. In
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particular, all necessary mathematical and
other background is introduced in the first
section so that the paper should be acces-
sible to any reader with a mathematical or
algorithmic bent. The intent is to cover the
breadth of the field, unify terminology, con-
vey the import of the main results, and act
as a guide to the literature, for which last
purpose a representative, rather than ex-
haustive, reference list is provided. As such,
this survey should be of interest to both
practitioners and researchers in the areas
mentioned above.

1. PRELIMINARIES

Since the evaluation of Boolean functions,
the programming of decision tables, and the
identification of unknown objects (biologi-
cal specimens, system faults, etc.) are
among the most important applications of
decision trees and diagrams, we provide a
succinct review of the terminology and
basic concepts of Boolean functions, deci-
sion tables, and identification problems.
Readers who feel comfortable with these
topics may wish to skip to Section 2.

1.1 Discrete and Boolean Functions

Only a very brief review is provided; for
more details, the reader is referred to
DAvi80 on discrete functions and to
HARRG65 on Boolean functions.

By discrete function, we mean a (partial)
function of discrete variables, f{ixy, ..., Xa),
where each variable, x;, takes exactly m;
values, which we choose to denote
0, ...,mi— 1. A discrete function is con-
stant if and only if (iff) it assumes the same
value wherever it is defined; it is null if it is
not defined in any point of its domain,
completely specified if it is defined every-
where. When a variable is evaluated, say
x; = k, we are left with the restriction, f(x:,

evey Xizly B, Xis1, . .., Xa), which we denote
f |1~» A variable, x;, is redundant iff
flaco= o o = flsome1, (1

where two functions are equal if they have
the same domain and codomain and assume
the same value wherever they are both
defined; a function without redundant vari-
ables is called intrinsic. Finally, a variable,

...................
----------------------
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x;, is termed indispensable iff it is not re-
dundant in any restriction resulting from
the evaluation of any subset of the variables
[I], coeygXi=ly Xitlg s o0y 3.}. (Tlns implies
that a function can never be evaluated at
any point without knowledge of the values
of all indispenssable variables.)

A Boolean function of n variables is a
discrete function, f: {0, 1}" — {0, 1}, where
{0, 1}" denotes the n-fold Cartesian product
of {0,1)}, that is, the set of all binary n-
tuples. Each n-tuple, (xy,..., x,), mapped
to 1 by the function is a minterm of the
function. A Boolean function can be speci-
fied by describing the mapping (giving its
“truth table”) or by listing its minterms and
those points at which it is not defined (so-
called “don’t care” conditions); it can also
be represented by a Boolean formula, usu-
ally in terms of the three operations of
disjunction (+), conjunction ( - ), and com-
plementation (7). A Boolean function of n
variables can be expressed in terms of two
functions of n — 1 variables by means of
Shannon’s expansion theorem

f,.... %) =X flxo+ Xi+ fls=r (2)

for each choice of x,.

Example 1

Consider the Boolean function of three
variables, f(x:, xz, x3), given by the mapping

f 0,00 — 0 1,000 — 0
0,0,1) — 0 (L,0,1) —- 0
01,00 — 1 1L,1,00 - 0
0141 - 1 (L1,1) - 1

Since every point in the domain is assigned
a value, the function is completely specified.
Other representations for f are the list of its
minterms

{(0,1,0),(0,1,1),(1,1, 1)}
or a Boolean formula

Tix:X3 + X1x2Xa + xix2xa,

The latter formula is equivalent to the list
of minterms; it can be simplified to yield
the minimum expression

Xix2 + X2xa.
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Tabie 1. Decision Table, Exampie 2

Raining? Yes No No
Wind condition

Breezy Calm Wind
y
Clean basement X X
Spade garden X
Fly kite with chil- X
dren

It is easily verified that the function is
intrinsic; expanding it around x; yields

=30+ x-(X1+x). a

1.2 Decision Tables

The terminology used in the following is
that of METZ77; other general references
are SiLB71 and Pooc74.

A decision table is an organizational or
programming tool for the representation of
discrete functions. It can be viewed as a
matrix where the upper rows specify sets of
conditions and the lower ones sets of ac-
tions to be taken when the corresponding
conditions are satisfied; thus each column,
called a rule, describes a procedure of the
type “if conditions, then actions.”

Example 2

Table 1 describes how to spend a Saturday
afternoon in spring. It has two condition
rows, three action rows, and four rules; the
first condition is a binary variable (taking
values “yes” or “no”), while the second is a
ternary variable (taking values “calm,”
“breezy,” or “windy"). According to normal
practice [MET2z77], condition and action
names are used as labels on appropriate
rows and a rule is specified by entering
values in the condition rows (or blanks, for
don’t care conditions) and X's (meaning
“execute”) in the action rows. The four
rules can be read as

“if it is raining, then clean the basement”;
“if it is breezy and not raining, then fly kite
with children”;

“if it is calm and not raining, then spade
the garden™;

“if it is windy, then clean the basement.” D

A pair of rules overlaps if a combination
of condition values can be found that sat-

Computing Surveys, Vol. 14, No. 4, December 1962




-T

596 o Bernard M. E. Moret
Table 2. Decision Table, Example 3

_Raining? Yes No No
Calm? (No) Yes (No)
Breezy? Yes (No) (No)
Clean basement X X
Spade garden X
Fly kite with chil- X
dren

isfies the condition sets of both rules. If two
overlapping rules specify different actions,
they are called inconsistent and the table
is said to be ambiguous; if they specify
identical actions, they are termed redun-
dant.

Decision tables described so far are in so-
called extended-entry form. Often, how-
ever, it is required that all conditions be
Boolean variables; this gives rise to limited-
entry decision tables. Although most such
tables are set up in limited format from
their conception, it may be necessary to
convert extended-entry tables to limited-
entry format; this is done by using one
Boolean variable for each value (but one)
of the multivalued variable to be replaced
[PrES65]. This process results in tables
where entries in one condition row often
imply (absent) entries in others; such im-
plied entries can also be present in any
decision table and give rise to apparent (but
nonexistent) ambiguity. Since the implica-
tions result from purely semantic consid-
erations, they cannot be detected by an
automatic processor, so that they must be
explicitly specified. The impossible combi-
nations of conditions will then be treated as
inputs with unspecified mapping.

Example 3

In Table 1, Rules 1 and 4 overlap because
they are both applicable when it is raining
and windy. Since they specify the same
action set, they are redundant, and since no
other rules overlap, the table is unambigu-
ous. Table 2 is the same table, converted to
limited-entry format. It still has three ac-
tion rows and four rules, but now has three
condition rows. Implied entries are shown
in parentheses; their absence, while not
confusing to a human, would induce an
automatic processor to decide that the sec-
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ond and third rules are inconsistent, since
both could apparently apply when it is not
raining and it is calm and breezy. It is noted
that the specification of implied entries in
the table is insufficient; while it identifies
the impossible condition set (no, yes, yes),
it fails to identify the equally impossible set
(yes, yes, yes), which will be erroneously
included in the first rule. This suggests that
logical inconsistencies be separately listed
[King73); for instance, the above table
would be supplemented by the logical
expression NOT (breezy AND calm). [

It should now be clear that an unambig-
uous extended-entry decision table is a spe-

cial case of a partial function of multivalued .

variables, where the conditions correspond
to the variables and the action sets to the
function values. In particular, a complete
decision table (one which has an applicable
rule for every combination of conditions)
corresponds to a completely specified func-
tion, and a limited-entry decision table cor-
responds to a function of binary variables.
An ambiguous decision table can be
modeled by a relation, as discussed later. A
sequential evaluation procedure for a deci-
sion table is then of particular importance,
since it corresponds to an implementation,
usually in software, of the decision table;
indeed, the importance of the limited-entry
format is in good part due to the ease of
programming binary decisions (by if-then-
else constructs) [MET277].

1.3 Identification Problems

Consider the situation where an unknown
event or specimen is to be classified into
one of a finite number of known categories,
based upon the outcome of a number of
tests. (This is a special case of the concept
of questionnaires {P1ca72].) Such identifi-
cation problems arise in biology, medical
diagnosis, machine trouble shooting, and
numerous pattern recognition applications.
A binary identification problem includes
only binary tests.

As defined in GARE72a, a binary identi-
fication problern consists of a finite set of
objects, (0, . .., O,), which represents the
universe of possible identifications, and a
finite set of tests (T,,..., T»), each of
which is a function from the set of objects

29




to the set {yes, no} (i.e, each test applied
to a specific object gives a specific yes/no
answer). In a simple binary identification
problem, all tests are of the form “is the
unknown object of type i?”; that is, their
outcome is no for all but one object
[GARE72b). An optional probability distri-
bution can be specified on the set of objects,
giving the a priori probability that an un-
known object will be identified as each ob-
ject in the set. In practical situations, the
number of tests and the number of objects
are often in the same range (even though,
in theory, the number of tests could be
arbitrarily larger than that of objects and
the number of objects could grow as an
exponential function of the number of
tests).

In our terminology, the tests are binary
variables and the objects are values of a
partial bijective function from the vari-
ables’ space to the set of objects. In biology,
tests are also known as characters or con-
ditions and objects as taxa or formae, while
the specification of an identification prob-
lem is known as a diagnostic table; in pat-
tern recognition, tests would be known as
features and objects as classes; in question-
naire theory, the tests are questions and
their outcomes are responses.

Example 4

Consider the identification problem given
by a set of five objects, {a, b, c,d, e}, a set
of four tests, (T, = {a}, T2 = {a,b}, Tz =
{a,b,c}, Te = {a,b, c,d}}. The same prob-
lem can be represented as a diagnostic table
(see Table 3), in which the rows correspond
to objects and the columns to tests. In our
terminology, we have a partial bijective
function of four binary variables, defined in
five points and given by the following map-
ping:

(yes, yes, yes, yes) —
{no, yes, yes, yes) —»
(no, no, yes, yes) —
(no, no, no, yes) -
(no, no, no, no) -

oo o®

O

This formulation provides a clean, but
very much simplified model of the general
identification problem. In pattern recogni-
tion applications, the test results are gen-
erally not as clearly defined; instead, each
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Table 3. Diagnostic Table, Exampie 4
T T T T,
a Yes Yes Yes Yes
b No Yes Yes Yes
c No No Yes Yes
d No No No Yes
e No No No No

test may take any of the possible values, as
specified by a discrete probability function.
The same problem arises in biology (where
it is known as probabilistic identification);
however, since the probability distribution
is often unknown, a confidence threshold is
normally used, which dichotomizes test
outcomes as “known” (taking a specific
value) or “variable” (susceptible of taking
any value). In the following, we shall first
look at Garey’s model, then generalize re-
sults to include the probabilistic identifica-
tion model.

2. DEFINITIONS
2.1 Decision Trees and Diagrams

A decision tree (or diagnostic key, as it is
known in many identification applications)
can be regarded as a deterministic algo-
rithm for deciding which variable to test
next, based on the previously tested vari-
ables and the results of their evaluation,
until the function’s value can be deter-
mined. Several constraints are placed upon
such an algorithm; all are designed to pre-
vent clearly redundant testing. The follow-
ing formal definition of a decision tree is
taken from MORESOb.

Detfinition 1

Let f(x,, ..., x,) be a (partial) function of
discrete variables. If f is constant or null,
then the decision tree for f is composed of
a single leaf labeled by the constant value
or by the null symbol. Otherwise, for each
xi, 1 € i € n, such that at least two restric-
tions, say f|:-s, and f|;-+,, are not null, f
has one or more decision trees composed of
a root labeled x;, and m, subtrees, which
are decision trees corresponding to the re-

strictions  fl.~o,...,fls=m-1, in that
order. (O

This recursive definition closely parallels
the conventional definition of ordered trees,
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Figure 1. The decision tree of Example 5.

such as binary trees [KNUT73]); it defines
decision trees as rooted, ordered, vertex-
labeled trees, where each node has either
m; children for some i, 1 € { =< n, or none
(and is a leaf). To an extent, this definition
prevents redundant testing: a variable is
tested only once on any path; no variable
can be tested which would result in all
restrictions but one being null; and no more
testing can take place as soon as the func-

- tion has been reduced to a constant.

The evaluation of a discrete function rep-
resented as a decision tree starts by ascer-
taining the value of the variable associated
with the root of the tree. It then proceeds
by repeating the process on the kth subtree,
where £ is the value assumed by the root
variable, until a leaf is reached; the label of
the leaf gives the value of the function.

Example 5

The Boolean function of Example 1 was
given by the formula

flx1, x2, X3) = X1x2 + X2X3.

A possible decision tree for that function is
shown in Figure 1. Since decision trees are
ordered, the left subtree of a node corre-
sponds to the node’s variable evaluating at
0, the right subtree to the variable evalu-
ating at 1. Thus the left subtree of the root
corresponds to the restriction

f I"id) - xz’
and the right subtree corresponds to the

_restriction

flx-l = X2X3.

Evaluation on the tree for the triple of
values (1, 0, 0) starts by examining x;; on
finding it to be 1, it proceeds to the right
subtree, there to evaluate x3. Since x; is
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found to be 0, the left subtree is next used,
thereby encountering a leaf and terminat-
ing the evaluation, having used only two of
the three variables; the label of the leaf is
the value of the function, that is, f(1, 0, 0)
= (. It is noted that a decision tree for a
Boolean function is an explicit illustration
of Shannon’s expansion; the tree of Figure
1 represents the expansion

Ax), 22, 23) = - [%2: 0 + x2- 1]
+x-[%-0+ x5 (%2-0+ x2-1)).

We note that the same subtree may occur
on several branches of the tree, in which
case it may be desirable to use only one
copy of that subtree by transforming the
decision tree (through a process known as
reticulation [PAYR77)) into a simple deci-
sion diagram, which has the structure of a
rooted, directed, acyclic (hyper)graph. In
the case of Boolean functions, further re-
quiring that there be only one leaf labeled
1 (the “finish” node) yields a free Boolean
graph. Of course, we can choose which
identical subtrees to merge, if any; in par-
ticular, every decision tree is a (simple)
decision diagram. To every simple decision
diagram there corresponds a unique deci-
sion tree; moreover, the paths in the dia-
gram are in one-to-one correspondence
with those in the tree. Conversely, to every
decision tree for a completely specified
function there corresponds a unique

minimal” diagram, that is, one in which
every possible merge has been accom-
plished. Reticulation sometimes also
merges nonidentical subtrees while preserv-
ing the identity of the function; in such
cases, it may happen that a variable occurs
more than once along a path from the root
to a leaf. Such nonsimple decision diagrams
may further decrease the total number of
nodes required; however, the second test of
a variable is redundant and thus detracts
from the diagram's “efficiency.”

Decision diagrams (and their correspond-
ing trees) can easily be programmed. LEE59
calls the result (simple) decision programs
and has suggested a universal instruction
type which implements the evaluation
process taking place at an internal node:

L:i,go....

[l g"l,‘l »
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Figure 2. The minimal free Boolean graph of Ez-
ample 6.

where L is a label, i identifies variable x;,
and g,, used only when x; = &, is either a
value (if the restriction for x; = &k is a
constant) or a label. Such an instruction is
executed by testing variable x; and upon
finding its value, say x; = k, taking the cor-
responding action, g, that is, either trans-
ferring control to the instruction labeled gu
or assigning to the function the value g;.
Thus to each node of the diagram there

.corresponds one instruction in the program.

Cerny [CERN79D] has investigated a spe-
cial-purpose architecture for the execution
of such programs.

Decision trees and diagrams for Boolean
functions find yet another implementation,
this time in hardware as multiplexer trees
and networks [CERN79a, THAY81a]. In a
multiplexer tree (network), each internal
tree (diagram) node is represented as a 2-1
multiplexer controlled by the node variable
and each leaf is implemented as a constant
logical value (wired at 0 or wired at 1); the
interconnection scheme is that of the deci-
sion tree (diagram). The evaluation of a
function then proceeds from the “leaves”
(the constant values) to the “root” multi-
plexer; the function variables, used as con-
trol variables, select a unique path from the
root to one leaf, and the value assigned to
that leaf propagates along the path to the
output of the “root” multiplexer.

Example 6

Consider the tree of Example 5. It is itself
a diagram; merging the identical subtrees
rooted in nodes labeled x; and the identical
leaves results in the minimal free Boolean
graph pictured in Figure 2. This diagram
can be implemented by the decision pro-
gram (where letters are used for labels to

ST e Na e L T S TR e TN '.“."‘.\K".'.E_'-'h'-'~*n.'.“~
_ Rt v e
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Figure 3. The multiplexer network of Example 6. D

istinguish them from values)
Start: 1,A,B
: 0,

Figure 3 depicts an equivalent multiplexer
network. We note that, as a consequence of
our definitions, the number of muitiplexers -
used in a network is precisely the number
of instructions of an equivalent decision
program; similarly, the maximum delay
through a network is proportional to the
maximum execution time of an equivalent
program, both being dependent upon the
length of the longest path through the dia-
gram. [

2.2 Measures on Decision Trees
and Diagrams

Since the root of each subtree can be la-
beled with any (up to the restrictions of
Definition 1) of the untested variables, the
number of possible decision trees for a given
function is in general very large (and that
of possible decision diagrams even larger).
For instance, the function of Example 5 has
ten distinct decision trees, as shown in Fig-
ure 4. In fact, a completely specified Boo-
lean function of n variables can have up to

n~1

Nr(n) = ] (n - " ®)
=0

distinct decision trees. Indeed, n choices are
possible for the root, followed by n — 1
choices on each of the two subtrees, or
(n ~ 1)? choices; in general, up to (n — k)?
choices are possible ‘at depth k. This cor-
responds to the recurrence relation

Nr(n) = n . (Nx{n - 1))%,

which shows that Nr(n) grows faster than
27, The first few values of Nr(n) are listed
in Table 4.
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Table 4. The Number of Decision Trees for
R Boolean Functions

n Nr(n) n Nr(n)

1 1 6 1.65.10%
2 2 7 1.91.10"
3 12 8 291.10*
4 576 9 7.64.10'1
5 1658880 10 5.8¢.10™

Not all tree or diagram representations
of a function are equally desirable. Thus
several criteria have been developed in or-
der to select an appropriate representation;
such criteria attempt to measure impor-
tant properties of decision trees and dia-
grams such as their implementation and
usage costs.

In the most general case, each variable
has an associated testing cost, which mea-
sures the expense (e.g., in time) incurred
each time that variable is evaluated, and a
storage cost, which measures the expense
(e, in memory) due to the presence of
each test node labeled by that variable. In
addition, a probability distribution is often
specified on the variables’ space, which can
be assumed uniform if not otherwise
known. These data allow the computation
of the following measures. (These and other
criteria are di in depth in
MoRe81b.)

Definition 2

(i) The worst case testing cost, A, is the
maximum path testing cost. When all
testing costs are unity, A& reduces to
the worst case number of tests, that is,
the height of the tree or diagram.

(ii) The expected testing cost, E, is the
expected value of the path testing cost,
where the probability of a path is the
sum of the probabilities of all the com-
binations of variables’ values that se-
lect that path. When all testing costs
are unity, E reduces to the expected
number of tests.

(iii) The tree storage cost, a, is the sum of
the storage costs of the internal nodes

.of the tree. When all costs are unity,

" a reduces to the number of internal

nodes of the tree,

(iv) The diagram storage cost, 8, is the sum
of the storage costs of the internal
nodes of the minimal diagram. O

Decision Trees and Diagrams

Figure 5. The decision tree of Example 7.

In the case of unity costs and uniform prob-
ability distribution, the only datum needed
to compute the first three measures (those
applicable to trees) is the number of leaves
at each level of the tree. Thus a decision
tree for a function of n variables can be
characterized by an (n + 1)-tuple, the leaf
profile [More80a], (Ao, . - ., As), where A; is
the number of leaves at depth i. The leaf
profile induces a lexicographic ordering on
decision trees, thereby giving rise to two
additional measures: (1) the maximum pro-
file, which ranks as “best” that tree which
is largest in lexicographic order (on the
grounds that leaves should be encountered
as soon as possible), and (2) the minimum
reverse profile, which ranks as “best” that
tree which is smallest in reverse lexico-
graphic order (on the grounds that the
number of long paths should be minimized).

Example 7

Assume storage costs s, testing costs £, and
probability distribution p, for the function
of Example 5:

8: X1—»1 2242 x3—3
tt x1—2>1 x202 x396

p: (0,0,0) — 010 (1,0,0) —
0,0,1) —- 015 (1,0,1) — 0.05
0,100 —- 005 (1,1,0) —
0,11 - 020 (1,1,1) — 0.15

Figure 5 shows the tree of Figure 1 with its
node probabilities. The expected testing
cost, E, of the tree is

E=(025+025).(1+2)+03.(1+6)
;- (005+0.15) - (14+6+2)
=54,

The tree’s profile is (0, 0, 3, 2), and its var-
Computing Surveys, Vol. 14, No. 4, December 1982
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Figure 6. Two possible decision trees
for the problem of Example 8.

ious measures are

Measure Value
A (worst case testing cost) . 9
Height (worst case number of tests) 3
E (expected testing cost) ’ 54
Expected number of tests 22
a (storage cost) 8
Node count 4 0O

Finally, when ascertaining the value of a
variable requires a costly apparatus (or sub-
routine), it may be desirable to minimize
the total cost incurred through the acqui-
sition of such apparatus for each variable
used in the tree; we call this criterion the
total acquisition cost. Minimizing this cost
is a common problem in biological identifi-
cation [PAYR80, WILL80], where the num-
ber of tests often exceeds the number of
taxa; the objective is to find the smallest
subset of tests that still separates all taxa,
which corresponds to minimizing the total
acquisition cost when all tests have unity
acquisition costs. Clearly, such a cost is
fixed (and maximal) for intrinsic functions,
since all variables must be tested, and thus
evaluated at some point or other in the tree.
In fact, this cost is better associated with
the functions rather than the trees.

2.3 Binary Identification

In the simplified model of binary identifi-
cation expounded by GARE72a, there is ex-
actly one combination of test values asso-
ciated with each object. Therefore decision
trees for such problems have a fixed num-
ber of leaves (one per object) and thus of
internal nodes (since the number of internal
nodes of a binary tree is one less than the
number of its leaves), so that their storage
cost is simply equal to one less than the
number of objects when all costs are unity.
Moreover, since no two leaves are identical,
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there can be no common subtrees, so that
decision diagrams for identification prob-
lems are decision trees.

In the even simpler case of simple binary
identification, a yes answer immediately
identifies the object and so terminates the
evaluation, so that at most one path (that
corresponding to the “no” answer) leads
from a test to another; this corresponds to
a degenerate tree with a number of internal
nodes equal to its height. Only one optimi-
zation criterion, the expected testing cost,
is applicable, and the optimization can be
done step by step using a simple ordering
of tests in terms of their cost to probability
ratio [JOHN56, RIES63, SLAG64, GARE72b].
Similar conditions arise when a Boolean
function is evaluated in a linear (as opposed
to tree-structured) sequence [HANAT77].

Example 8

Two possible decision trees for the binary
identification problem of Example 4 are
illustrated in Figure 6. Both trees have a
storage cost of 4; their other measures are

number of
Tree Leaf profile  Height tests
Left 0,0,3,2,0 3 24
Right 0,1,1,1,2) 4 28 0O

3. OPTIMIZATION

In most applications, decision trees and dia-
grams must be constructed from function
descriptions. Since, as previously observed,
numerous tree representations can be built,
with varying usage costs, we naturally
strive to construct a decision tree which
optimizes a suitable measure. This en-
deavor raises several questions.

]
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(i) Since the choice of an optimization
criterion can be difficult, can a tree be
constructed which simultaneously op-
timizes several measures?

(ii) How difficult is the optimization task
for each criterion?

(iii) If constructing an optimal tree is too
time consuming, are there fast heuris-
tic methods that build acceptable sub-
optimal trees? If so, how good are
those methods?

In this section, each question is answered
in turn and a survey of optimization meth-
ods provided.

3.1 Questions ot Compatibility

In order to answer the first question, we
examine the relationships between mea-
sures, We shall say that two optimization
criteria are compatible if, for every function
in a given family, at least one tree can be
constructed that satisfies both criteria.
Moret [MORES1b] has shown that, even if
we restrict our attention to the family of

- Boolean functions with uniform costs and

probabilities (the case that is least condu-
cive to incompatibilities), all criteria are
pairwise incompatible, with two exceptions:
(1) the minimum height is a special case of
the minimum reverse profile, and (2) the
exact relationship of the number of diagram
nodes with the number of tree nodes is as
yet unknown. (However, it is easily shown
that the minimization of one does not nec-
essarily result in the minimization of the
other.) In the more general case of discrete
functions with nonuniform costs and prob-
abilities, all criteria are pairwise incompat-
ible [MORES1b]. ]

Thus it appears that the six measures
defined on decision trees and diagrams are
essentially independent, so that we are in-
deed faced with a problem of choice. In
order to gather more information about the
possible choices, we now address the second
question.

3.2 Questions of Complexity

The problem of constructing optimal deci-
sion trees and diagrams has been addressed
by many researchers using branch-and-
bound techniques [REIL66, REIL67,

Decision Trees and Diagrams  » 603

Bre175b] and dynamic programming
[GARE72a, Misr72, Mei1s73, BAYE73,
Scru76, PaYH77, MART78]. In the follow-
ing, we review those and more iali
techniques. Each method is first introduced
and its salient characteristics mentioned; a
more detailed explanation follows, which
the less mathematically inclined reader
may wish to skip.

3.2.1 The Dynamic Programming Method
Dynamic programming is of particular in-
terest as all of our tree measures obey the
“principle of optimality,” that is, they are
such that an optimal solution can be built
from optimal subsolutions. This is the case
because the building of a decision subtree
for each restriction is a separate problem
that can be optimally solved independently
of the others. This also tells us that our
sixth measure, the diagram cost, does not
obey the principle of optimality, since sub-
diagrams often overlap; the resulting inter-
action destroys the independence of the
subproblems.

The general algorithm builds the optimal
tree from the leaves up by identifying suc-
cessively larger optimal subtrees (one for
each combination of tested and untested
variables). This approach is embodied in an
algorithm designed to convert limited-entry
decision tables to decision trees with mini-
mal expected testing cost (BAYE73). This
solution was independently discovered by
ScruU76, who generalized it to extended-
entry decision tables; a refined version, us-
ing some game tree heuristics, was recently
published [MART78]. A closely related pro-
cedure was developed for use in pattern
recognition to minimize the worst case or
the expected testing cost of binary decision
trees [ME1s73, PAYH77). The earliest ver-
sion of the algorithm appears to be due to
GARET0 (see also GARE72a, M1sR72) in the
context of binary identification problems.

For a function of n k-ary variables, the
algorithm requires a8 number of operations
proportional to n-k-(k + 1)*'. Since a
complete specification of the function re-
quires $ = k" items of information, the
algorithm takes O(S'*s**" . log S) time for
completely specified k-ary functions and is
thus fairly efficient. For partial functions,
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in particular identification problems, how-
ever; the input size may be much smaller;
a binary identification problem with m tests
and n objects requires the specification of
m items each of size n (the answer to each
test for each object) for an input size of S
= m-.n. In this case, the algorithm may
require time exponential in the input size,
thereby being very inefficient. In fact, bi-
nary identification problems appear to be
intrinsically “hard,” that is, there is consid-
erable evidence that no algorithm can be
developed for them that would not require
exponential time.!

We now examine in more detail how the
dynamic programming method is applied
to the optimization of decision trees and
provide an example; the less mathemati-
cally inclined reader may wish to skip to
the beginning of the next section.

If variable x;, with testing cost & and
storage cost s;, is tested at the root of a
decision tree for the function f(x,, ..., x,),
then the optimal values for the first three
measures of Definition 2 are

Puio(f) = b + Max{Feialf]s=0), - - - »
hmin(flx,-m,-l)},

Eoielf) = ti+ 3 p(£i=)) - Bninlflscei)s
=0

‘a..i..(f) =5+ 3 a minlfls=) (4)
J=0

where p(:=j) denotes the probability that
x, takes on the value j. Similarly, the leaf
profile of this tree is obtained by summing,
component by component, the leaf profiles
of its subtrees, then introducing an addi-
tional first component, set to 0. In a decision
diagram, however, the subdiagrams repre-
senting the various restrictions usually
overlap, so that the storage cost of a func-
tion is not directly related to the storage
costs of its restrictions. This shows that five
of our six measures indeed obey the prin-
ciple of optimality.

The algorithm will generate all possible
restrictions of the function. For a function

' Technically, they are NP-hard {GARET79] problems,
as proved in HYar76 and Love79; for a detailed dis-
cussion of the exact complexity, the reader is referred
to Mores8lb.
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of k-ary variables, each variable can be in
any of (k + 1) conditions (k values and the
untested state) so that there are (k + 1)"
distinct combinations; generating them
from the bottom %" leaves (all variables
tested) to the unique top node (all varia-
bles untested) requires a number of steps
equal to

T (n=i (n) K mnke (ke + 1)
=3 i
®)

since a node with { untested variables has
n — i possible parents (each with one
more untested variable) and can be chosen
in (?) - 2 ways. Therefore, using the
“big Oh” notation of algorithm anal-
ysis [WEID77], the algorithm takes O(n - k -
(k + 1)*"!) time.

A restriction with n — i untested vari-
ables determines a subspace of &‘ points,
which we call an i-subcube. The algorithm
starts by considering all 0-subcubes (that
is, all points in the variables’ space), then
forms all possible 1-subcubes by merging &
0-subcubes, in effect letting one variable be
undetermined (so that a unique variable is
associated with each merging). This process
continues, forming all i-subcubes by merg-
ing (i — 1)-subcubes, until the final n-sub-
cube (the complete space) is formed. Each
subcube is identified by an n-tuple of val-
ues, (i1,...,#), where § is X if the jth
variable is untested at that node, and is the
variable’s value otherwise. For instance, the
0-subcubes identified by (0,1,...,1),
11,...,1,...,(k = 1,1,...,1) can be
merged into the l-subcube given by (X,
1,...,1) by letting variable x, be untested.
Thus the process builds a lattice of (& + 1)*
nodes with n- R« (¢ + 1)"! edges. It is
noted that the same i-subcube can be
formed by merging one of i distinct k-tuples

.of (i = 1)-subcubes.

As the lattice is built, each node (i.e.,
each subcube) is assigned a cost and a
value; if we are interested in the expected
testing cost, the probability of each node is
also computed. The probability of r - i-sub-
cube is just the sum of the probauviusies of
the &k merged (i — 1)-subcubes; the value of
the function for an i-subcube is that of the
k merged (i — 1)-subcubes, if their function
values were identical, and is “?” (a special

L R i e et e S e

e




¢
o o

symbol indicating that the value is a non-
constant function) otherwise. One easily
verifies that these quantities are well de-
fined, that is, independent of the choice of
the merged subcubes. Finally, the cost as-
signed to an i-subcube is the minimum cost
of merging, where the merging of & (i — 1)-
subcubes has cost 0 if all 2 subcubes have
identical known values, and is equal to one
of the equations (4) otherwise. Initial con-
ditions are given by 0-subcubes with values
and probabilities given by the problem. The
cost of the top node (the n-subcube) is just
the cost of the optimal tree for the function;
the tree itself can be recovered by walking
down the lattice, choosing at each step to
test the variable that gave rise to the least
costly merging, until nodes with a known
value (leaves) are reached.

Example 9

We shall make use of the function of Ex-
ample 7 to show how the dynamic program-
ming algorithm produces a decision tree
with minimal expected testing cost. With 3
variables, the variables’ space has 2° = 8
points, each identified by a unique combi-
nation of the 3 variables. The algorithm will

Decision Trees and Diagrams ¢ 605

Figure 7. The dynamic programming lat-
tice of Example 9; all initial costs zero.

build a lattice of 3" nodes with n . 3" pairs
of edges, as shown in Figure 7. Since we are
interested in the expected testing cost, we
keep track at each node of the function’s
value, the node’s probability, and the merg-
ing costs, where the cost of merging two
(i — 1)-subcubes is 0 if both subcubes have
identical known values, and is equal to
c-(m+p+a+c

otherwise, where ¢, p: (c2, p2) are the cost
and probability of the first (second) (i — 1)-
subcube, respectively, and c¢ is the testing
cost of the variable used in merging. Since
the cost of the least expensive merging
which produces the top node is 5.05, that is
the cost of the optimal tree for our problem.
The large arrows in Figure 7 show which
merging was least expensive at each step
and allow the recovery of the optimal de-
cision tree, in this case, the linear testing
sequence x;x;xs (the fifth tree in Figure
4). O

3.2.2 The Branch-and-Bound Method

Our sixth measure, the diagram storage
cost, is not amenable to a solution by dy-
namic programming, since it supposes iden-
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tification of common subtrees and thus a
global (as opposed to dynamic program-
ming’s local) view of the subproblems. Thus
optimization of diagram storage cost is done
by search techniques, principally branch-
and-bound [REIL67], a method which has
also been applied to the optimization of the
expected testing cost [RE1L66, BRE175b].

Recall that a branch-and-bound algo-
rithm proceeds by always developing that
partial solution which is potentially less
expensive than any other (as determined
by a lower bound function), often switching
from one partial solution to another when
lower bounds change, until one solution has
been completely developed {LAwL66). The
lower bound function used for the diagram
and tree storage costs [REIL67] is based
upon this simple fact: a nonredundant vari-
able must appear at least once in any dia-
gram. Thus a rough lower bound can be
derived by simply summing the storage
costs of all the nonredundant variables. The
lower bound used for the expected testing
cost can be derived in an analogous fashion
by considering the a priori probability that
each variable will be tested in any decision
tree representation and modifying it to re-
flect the influence of the choice of a root
[REIL66, BREI75b, MORESOD], or it can be
derived from first principles as a complexity
measure on decision trees [MORE80a).

The principal disadvantage of the
branch-and-bound method is that it may
result in a near-exhaustive search of the
possible trees and diagrams, a process that,
in view of the dimension of the search space
(as previously discussed), leads to intolera-
bly long computations. In terms of algo-
rithm analysis, the branch-and-bound tech-
nique is an exponential-time algorithm, re-
gardless of the input size.

We now examine in more detail the
bounding functions mentioned above and
illustrate the use of branch-and-bound
methods by a simple example. Again, the
less mathematically inclined reader may
wish to skip to the next section.

A lower bound on the storage cost of a
decision tree must incorporate the influence
of the choice of a given variable to be of use
in the branch-and-bound process. To
achieve this end, the lower bound is modi-
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fied by using a one-level “look-ahead”; if
variable x, is chosen for the root of the tree
representing function f, then the lower
bound is the sum of

(i) the storage cost of the chosen variable,
Xis
(ii) the storage cost of each x,, j ¥ i, times
the number of restrictions, f|.-a, for
which x; is nonredundant.

For diagrams, the multiplicative factor in
(ii) is modified to take into account the fact
that x; may play exactly the same role for
some restrictions, that is, that for every
combination of values of the remaining
variables, either all the restrictions are
equal or at most one is not constant.

The lower bound on the expected testing
cost of a decision tree can be derived from
first principles by considering the develop-
ment of a measure of the influence of a
variable on the expected testing cost of
decision tree representations. Any such
measure should possess the following two
properties:

(i) the measure is minimal (equal to zero)
when the variable is redundant and
maximal (equal to the variable’s testing
cost) when the variable is indispens-
able;

(ii) the measure is compatible with the tree
structure, that is, if we denote such a
measure for the variable x; by a/(x,), it
must be the case that, for each j ¥ i,

m;~1
ar(x;) = 12 P(x; = k) - ar] 5,<a(x).
A=0

Moret [MORES80a] has shown that only one
measure satisfies those two conditions: the
activity of a variable, which is equal to the
testing cost of the variable times the a priori
probability that it will be tested (a concept
related to the Boolean difference used in
Boolean algebra [THAY81b])). The a priori
probability that variable x; will be tested is
just the probability that, with all its other
variables evaluated, the function still de-
pends on x;; this is easily computed in linear
time. The lower bound used in RE1L66 and
BRE175b can then be defined as the sum of
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Figure 8. The partial trees as developed by the branch-and-bound method for the function of Example 10:

(a) after the first stage; (b) after the second stage.

the testing cost of the root variable and the
activities of the remaining variables
[MoRreS80b).

. Example 10

Consider again the Boolean function of our
previous examples. The activities of the
three variables are found to be

as(x)) = l.prob(x=1 and x;3=0)

= (.3,

as(x3) = 2.prob(xz =1 or x;=0)
= 14,

ar(xs) = G-prob(xy =1 and x;=1)
=24,

Now the lower bound on the expected test-
ing cost of a decision tree for f with root x;,
Ib/(x,) can be computed for each variable

Ib(x1) = t(x)) + ar(x2) + ar(x;) = 4.8,
Ib(x2) = t(x2) + a/(x1) + ar(xs) = 4.7,
Tor(x3) = t(x3) + ar(x1) + ar(xz) = 7.7.

Thus the branch-and-bound algorithm
chooses to develop the tree rooted in x;.

The left subtree is then a leaf labeled 0 s0
that only two possible partial trees arise,
depending on the choice of the variable
tested at the root of the right subtree.
Lower bounds are computed in turn for
these. We now have four partial subtrees,
pictured with their lower bounds in Figure
8a. The algorithm will choose to develop
the first partial tree (rooted in x), since it
is now the least expensive; this yields four
partial trees for a total of seven partial
trees, pictured with their lower bounds in
Figure 8b. Now the algorithm will return to
the fifth tree (rooted in x;) and complete it;
since its final coet, 5.05, is lower than the
bound on any partial tree, the completed
tree is optimal. [

3.2.3 Other Methods

In the context of logic—particularly Boo-
lean—functions, specialized methods have
been devised which attempt to use some of
the standard tools of logic (such as reduc-
tion to canonical or minimal formulas and
decompositions) in order to construct de-
cision trees and diagrams with minimal
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storage or expected testing cost [MicH78,
THAY?8, CERN79a, THAYS81a).

The minimization of storage or expected
testing cost for decision trees has been ap-
proached for Boolean [CERN79a] and mul-
tivalued [THAY78] logic functions by con-
sidering a special class of subfunctions,
which the authors call T-terms. Starting
with the terms of order 0, which are just
logic cubes (in the sense of switching theory
[HARRG65]), terms of successively higher or-
der are constructed by consensus opera-
tions. (That is, for each variable, x;, one
takes the consensus of a T-term of order n
and one of order & < n with respect to x;;
the result is a T-term of ordern + 1 if it is
not already a T-term of lower order and if
it is independent of x;.) Only the prime
terms are kept in the construction process
(where a prime term is a term not contained
in any other term of the same order). A
simple procedure is then used to derive a

.tree optimal with respect to worst-case test-

ing cost, expected testing cost, or storage
cost. Although the algorithm sheds light on
the relationship between Boolean formulas
and optimal decision trees, it is not of prac-
tical interest (expect for minimizing dia-
gram storage cost) since it contains a hard
problem; the prime terms of order 0 are just
the prime implicants of the function
[HARR65] and obtaining them, even from
complete function descriptions, is known to
be NP-hard [MASES2]. As a result, the pro-
cedures proposed may require exponential
time under any input size. A similar draw-
back is present in the algorithm published
by Micu78, which converts extended-entry
decision tables to decision trees with mini-
mal storage or expected testing cost, since
the algorithm starts by establishing a min-
imal disjoint set cover for the function, a
process known to be NP-hard [GARE79].
An extension of T-terms was recently
proposed by THa .3la for the design of
decision trees and diagrams with minimal
storage cost. This formulation is based on
a class of functions called P-functions,
where a P-function for the Boolean function
f is a pair, (g, &), of functions such that f
and A are equal when restricted to the
points where g evaluates to 1. A composi-
tion operation is defined that allows the
building of a lattice of P-functions, from the
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lowest order (with A = 1 or A = 0) to the
highest order (with g = 1). Again, only
prime P-functions are retained in building
the lattice. A search procedure generates
optimal decision diagrams from the lattice
of prime P-functions. The generation of
optimal decision trees, however, requires
that prime P-functions be replaced by
prime P-cubes, that is, prime P-functions
restricted so that they are logic cubes. Since
the lowest order P-cubes comprise the
prime implicants of the function and its
complement, we find anew the NP-hard
subproblem, so that the synthesis of opti-
mal decision trees by P-functions requires

exponential time and is therefore of little

practical interest. (It must be noted that we
do not imply that finding prime implicants
is an unsurmountable task; in fact, several
algorithms for that purpose have been stud-
ied and shown to do well in practice
[SLAG70, HuLM75]. Our point is that the
methods described above, which incorpo-
rate this NP-hard problem as only a small
part of the complete work, cannot compare
with the dynamic programming method.)
On the other hand, the construction of op-
timal diagrams, while exponential (no anal-
ysis is provided with the algorithm, but the
generation of all prime P-functions may
clearly require that much time), remains of
interest since no substantially better solu-
tion is known.

We now proceed to a closer examination
of the composition of P-functions, followed
by an example. Once again, the less math-
ematically inclined reader may wish to skip
to the next section.

If f has n variables, it has up to2*" — 1 P-
functions on which a lattice structure can
be established, from the lowest to the high-
est order by means of the following non-
commutative composition law (designed to
be compatible with Shannon’s decomposi-
tion). A P-function of order # + 1, (g, Ah),
is obtained from two P-functions of lower
order (one of order k& and the other of order
no larger than k), (g0, ko) and (g, A1), by
using, for each x;, the formula

(& h) - (golx.‘o'glll.‘h Fl‘h") + xl"hl )n (6)

which we denote {(go, ko) ©i (&, lv). Ina
sense, the resulting P-function of order
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& + 1 corresponds to our state of knowledge
prior to testing variable x.. Indeed, substi-
tuting x; = 0 into (g, A) yields

(goll.-o'glll.'b ho)l
and substituting x; = 1 yields
(golx,-O'gllx,-l, hl )n

which shows how the second function in
the pair reflects our increased knowledge
about the function £ (until that second func-
tion is a constant, meaning that the evalu-
ation of f is complete), while the first func-
tion provides us with information about the
path of evaluation followed so far.

Example 11

Consider the Boolean function of our pre-
vious examples. The two prime P-functions
of order 0 are

Ao=(f,1) and A= (f,0).

From those two functions, we can form six
P-functions of order 1, three of which are
prime:

Bo= Ao ®1 A, = (x3X3, X1),
By = A; &40 = (X1 + x5, X2),
By = A, &3 Ap = (x1%3, X3).

Using now the five prime P-functions of
order 0 and 1, we can form 54 P-functions
of order 2 (not all distinct), four of which
are prime:

Co= Ay ®, B, = By ®, A

= <x2|x—l+x3)y
Ci=A OB, =B, 04

- (z+x3s xz)’
C;=A, O3B = {x) + X2, x3x3),
Ci= B, O, A, = (X; + X3, Taxa ).

Finally, we can use our nine prime P-func-
tions of orders 0, 1, and 2 in order to obtain
the single prime P-function of order 3 at
the top of the lattice, Do = (1, f):

Dy= A Co=C;0Co=C3:Co
-C|®1Cz‘31®102-03®3cl
= C3®; B:.

The corresponding lattice is shown in Fig-
ure 9, where a number, i, in a circle has
been used to denote a composition with
respect to the ith variable. A search

.......
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Figure 9. The lattice of prime P-functions of Exam-
ple 11.

through the lattice shows that the optimal
diagrams have three nodes for a storage
cost of 6; the diagram of Figure 2 was one
of those. O

3.3 thlon; of Optimality

Since decision tree optimization is an NP-
hard problem under polynomial-size inputs
{MoRESOb], it is necessary to develop some
heuristics that will allow the fast construc-
tion of good, albeit not optimal, solutions.
Indeed, some such heuristics have been
proposed even before an optimal algorithm
was developed; it appears that the so-called
“gplitting” heuristic, discussed below, was
known to Aristoteles and Theophrastus
[Voss52], and many heuristics were pro-
posed for the conversion of decision tables
[MonNT62, EGLE63, PoLL65] before the pub-
lication of the branch-and-bound solution
of REIL66,

All published heuristics are of the so-
called greedy type, that is, they perform a
local, step-by-step optimization. Three
main types of criteria are used; the appar-
ently large variety results from attempts
to accommodate tests with variable out-

Computing Surveys, Vol. 14, No. 4, December 1962
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comes (as in most biological applications
[Brow77, Gowg75, PAYRS1])), or from mi-
nor differences in preprocessing (such as
attempts to put decision tables in a canon-
ical form [SHwWA75]), or in the extent of
look-ahead used (while most strategies use
no look-ahead at all, SETH80 has suggested
a one-step look-ahead and MICH78 pro-
posed a range of look-aheads, from 0 to %
step). These three criteria are discussed in
some detail below. (Since the discussion of
the first—and most important—of these
criteria involves some mathematical ma-
nipulations, we once again have organized
its discussion in two parts, grouping all
mathematical concepts in the second.)

3.3.1 The information-Theoretic Criterion

In this strategy, commonly used for the
(near) minimization of the expected testing
cost, the problem is viewed as one of refin-
ing an initial uncertainty about the func-
tion’s value into a certitude. At each step,
the test of a variable diminishes the uni-
verse of possibilities, thereby removing a
certain amount of ambiguity. In informa-
tion-theoretic terms, the initial ambiguity
of a (partial) function is expressed by the
entropy of the function (for a lucid exposi-
tion on the topic, see the original paper of

~ SHAN48). The ambiguity remaining after

testing a variable can be computed as the
average ambiguity among the restrictions.
This allows the computation of the ambi-
guity removed (or, equivalently, the infor-
mation gained) by testing that variable.
The information heuristic then chooses at
each step that variable which removes the
most ambiguity per unit testing cost.

The previously mentioned splitting heu-
ristic is a special case of the information
heuristic for identification problems. It is
well known [SHAN48] that the removed
ambiguity is maximized by letting all re-
strictions have equal probability; thus,
when all variable costs are unity, the infor-
mation heuristic chooses that variable
which “splits” the set of objects into subsets
with most nearly equal probabilities. In the
case of binary identification problems with
equally likely objects and unity costs, this
means selecting that test which splits the
objects into subsets of most nearly equal
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size. Yet another aspect of the splitting
heuristic is a criterion used for binary iden-
tification problems [GYLL63, CHANG65],
which selects that variable which separates
the largest number of pairs of values: if n is
the total number of values and & the num-
ber of values put into one subset, then
k.(n ~ k) pairs are split. This criterion is
optimized for 2 = n/2. (Choosing that vari-
able which separates the largest number of
pairs could be described as the separation
heuristic; this criterion also appears in a
variety of forms, some of which attempt to
include tests with variable outcomes
[Brow?77, PAYRS0].)

Descriptions of the heuristic and its var-
iants abound [KLET60, RESc61, OsB063,
MAaND64, GOWET71, GANA73, SHWA74], but
it was not until later that the performance
of the information heuristic was analyzed.
Garey [GARE74] studied its application to
identification problems and showed that,
although it is quasi-optimal when all pos-
sible tests are available (a result dating
from Z1mM59), there are problems for which
it can construct trees with an expected test-
ing cost arbitrarily larger than the optimal.
This result disproved a long-standing con-
jecture that the splitting algorithm was op-
timal for identification problems with
equally likely objects [KLET60, OsB063);
such a result is, of course, predictable now
in view of the NP-hardness of the problem
since an optimal polynomial algorithm
would disprove the widely held opinion that
NP-hard problems actually require expo-
nential solutions. However, HUNG74 proved
that the heuristic is, on the average, asymp-
totically optimal; that is, the ratio of the
average cost of trees built with the infor-
mation heuristic to that of the optimal trees
converges to 1 as the problems get larger.
This result must be qualified by the obser-
vation that most functions have an ex-
pected testing cost fairly close to maximum,
so that the asymptotic ratio used in
HUNG74 is in general fairly small for any
heuristic. Indeed, MORES1b showed that
completely specified Boolean functions of
n variables with unity costs and uniform
probability distribution have an asymptotic
expected testing cost of n — 1, so that in
this case the asymptotic average ratio must
be 1 for any heuristic. Recently, HART82
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presented a generalization of the informa-
tion heuristic which allows for more com-
plex objective functions (including the ac-
quisition cost) and offers a trade-off be-
tween the complexity of the construction
and the upper bounds that can be placed
on the size of the resulting solution.

The information heuristic is efficient: for
an input size of O(S), it takes time O(S-
log S) which, while barely faster than
the optimal dynamic programming solution
for exponential size inputs, compares very
favorably indeed with the exponential-
time algorithms used for identification
problems.

We now examine the entropy computa-
tions in some detail; once again—and for
the last time—the less mathematically in-
clined reader may wish to skip to the next
section.

The expression for the entropy of a func-
tion f is [SHAN4S]

Hy= =Y p(f=v)log2 p(f=v), (7)

where p(f = v) is the probability that f
takes the value v and the sum is taken over
gll the values v in the range of f (values of
p(f = v) are normalized so that their sum
over the values of v is equal to 1). After
testing variable x;, the remaining ambigu-
ity, Hy(x;), is the average ambiguity among
the restrictions:

m—1

Hi(x) = I [p(xi=j)-Hilsey):
=0

Hence the ambiguity removed by testing x;
is the quantity

Ir(x:) = Hy — H/(x:). 8

This quantity is computed for each vari-
able; the information heuristic then chooses
at each step that variable which has the
greatest ratio, I;(x:)/t..

For identification problems, the expres-
sion for the removed ambiguity can be sim-
plified to

m—1

I(x) = - Z}o p(xi = j)-log: p(xi = j), (9)
J

which is seen to be of the same form as (7).
Thus maximizing the removed ambiguity
in an identification problem involves find-
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ing that variable x; such that the probabil-
itnt':ep(z.- = j) are most nearly equal to each
other.

Exampie 12

Let us use once more the function of Ex-
ample 7. The entropy of the function is

Hy=~[p(f=0) - log: p(f = 0)
+p(f=1) -log: p(f=1))
= —[0.6-10820.6 + 0.4-l0og20.4] & 0.971.
The ambiguity remaining after testing x; is
Hi(x:) = p(x1 = 0)-Hf|s,=0
+p(x; =]) 'Hflxl-l
& 0.5-14+05.0881 & 0.941.
Thus the information gain of x, per unit
testing cost is

I(x:) (0971 — 0.941) -

=) = 1 0.03.
Similarly, we find

I(x;) 0971 - 0.625

%) = 3 = (.173,

I(xs) 0971 -~ 0.652

ti%s) = 3 = 0.053,

80 that the heuristic will choose to test x;
first. Since the restriction for x; = 0 is
constant, only the restriction for x, = 1
remains. The information gains per unit
cost of x, and x; for that restriction are

I[l;,-l(xx) (0.961 — 0.382) -

t(x) 1 0.579,
I,|.,.l(xa) (0.961 - 0.195)

t(xs) 6 = 0.128,

so that x, is tested next. The completed
tree is in this case the optimal tree devel-
oped previously. (1

3.3.2 The Activity Criterion

A class of simple heuristics can be obtained
for any problem by using the bounding
functions of branch-and-bound algorithms
and doing local optimization on their basis,
in effect using branch-and-bound without
backtracking. This approach is of no partic-
ular interest for the minimization of storage
cost (although it has been used for that
purpose [RABI71, Yasu71])) since the exist-
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ing bounds are too loose; it is, however,
applicable to the minimization of the ex-
pected testing cost, since the lower bound
based on activity is in general tighter.

The activity heuristic has the same com-
putational requirements as the information
heuristic. Moret [MORESOb] provided an
analysis of its performance, showing that
the worst-case ratio for completely speci-
fied Boolean functions with unity costs and
uniform probabilities is limited to 2, but
can be arbitrarily large if nonuniform prob-
abilities are allowed. This heuristic appears
to be of less interest than the information
heuristic, since it performs best for “dense”
problems, that is, those in which the func-
tion is specified on most of its domain,
which are precisely those problems that can
be efficiently solved by the optimal dy-
namic programming algorithm.

Finally, a similar approach has been
taken by some authors for biological iden-
tification problems, using rough lower and
upper bounds on the number of tests
needed to complete an identification (see
the thorough studies of Brow77 and
PAYRS1). In one such approach, it is pos-
tulated that the subtree will be completed
optimally (i.e., following Huffman’s proce-
dure—even though only a small proportion
of all tests is available); the resulting lower
bound is used for deriving a selection cri-
terion {[DALL74, BROW77]. Alternatively, it
is assumed that the tree will be completed
by a linear sequence of simple tests; the
resulting estimate is an upper bound under
most conditions and allows the derivation
of another selection criterion [PaYRS81].
However, those criteria are based on rather
simplistic bounds and thus susceptible to
large errors; despite the lack of either the-
oretical or practical results about their per-
formance, one can safely predict that their
average performance is worse than that of
the other criteria examined so far.

3.3.3 Ad Hoc Criteria for Boolean Functions

Since Boolean functions are conveniently
expressed by formulas, special heuristics
can be developed that are based on char-
acteristics of the formulas such as number
of terms or literals.

One such heuristic, proposed by HaLp74
for the minimization of the expected testing

Computing Surveys, Vol. 14, No. 4, December 1962

» Uy LW

Aol o
e e LR

cost, necessitates the generation of all
prime implicants for the function and its
dual; the implicants are then ranked in
terms of their probability to cost’ ratio.
Variables which appear in both the best
implicant for the function and that for its
dual are then selected (at least one such
variable must exist). Halpern [HaLP74]
proved that this strategy is optimal for sym-
metric functions (those that remain invar-
iant under any permutation of the vari-
ables), but offers no analysis of performance
in the general case,

Breitbart [BRE175a] presented a similar
heuristic for monotone Boolean functions
with unity costs and uniform probability
distribution, which uses the minimal dis-
junctive form of the function (this form is
unique for monotone functions (HARR65]);
in a later analysis [BRE178), it was shown
that trees constructed by this rule can
have an expected number of tests at least
(n/log n) times larger than the optimal
trees for functions of n variables.

Both heuristics apply only to completely
specified Boolean functions and require ex-
ponential time since the generation of all
prime implicants and/or the minimization
of the disjunctive form are NP-hard prob-
lems [MaAsES82)]. Since dynamic program-
ming offers an O(S'*#.log S) optimal so-
lution to the same problem, these heuristics
are of interest only when the function is
already specified by its prime implicants or
its minimal disjunctive form.

4. APPLICATIONS

In this section, we describe the main fields
of application and review related resuits.
We distinguish four fields: (1) decision table
programming; (2) diagnosis, identification,
and pattern recognition; (3) logic and pro-
gram design; and (4) analysis of algorithms.
Of these, only the last three are treated,
since decision table programming is chiefly
concerned with the construction of optimal
decision trees, a topic with which we dealt
in the previous section.

* The cost of an implicant is that of the optimal tree
for it; that tree is easily constructed [R1E863, SLAG64]
since tree representations of conjunctions of variables
are just linear test sequences.




C

............

4.1 Diagnosis, identification, and Pattern
Recognition

Garey [GARET72a] argues that most identi-
fication problems of human origin include
a large number of simple tests (of the type,
“Is the unknown object of type i?”) plus a
smaller number of “well-splitting” tests. In-
deed, this is how most of us approach the
typical identification problem of “twenty
questions,” starting with general, well-split-
ting questions (e.g., “Is it mineral?”) and
ending the game with simple questions (e.g.,
“Is it an aardvark?”). Several large identi-
fication problems approximate this descrip-
tion, notably in botanical and biological
classification [MoLL62, PANK70, MoORs71,
WiLL80). Garey [GARE72a) has described a
dynamic programming algorithm especially
designed for this type of problems that con-
structs identification trees with minimum
expected testing cost.

In most identification problems, many
more tests are present than are needed for
the identification of all objects. In conse-
quence, several researchers have studied
the problem of obtaining a minimal set of
tests; we recognize in this problem the min-
imization of the total acquisition cost. Such
an optimization is important when individ-
ual tests are time consuming and prompt-
ness in identification essential (as in medi-
cal diagnosis [PAYR80, WILLB0]), so that
parallel, rather than sequential, testing is

- used. Unfortunately, the minimum test set

problem, as it is known, is itself NP-hard
{GARET79]. As a result, splitting heuristics
based on the number of split pairs have
been proposed for the construction of sub-
optimal solutions [GYLL63, CHANG5]; how-
ever, no performance analysis was supplied.
(The general analysis of the splitting algo-
rithm presented in the previous section
does not apply here since the goals are quite
distinct.) Some preliminary analytical re-
sults as well as extensive experimental data
can be found in MoRES2. This problem is
closely related to that of finding prime im-
plicants for functions of Boolean variables,
since each minimal set of prime implicants
determines an irredundant set of tests for
the problermn. Hence methods have been
proposed that first find all prime implicants
and then attempt to find a set of prime
implicants that minimizes the number of

P Sate S Ses Jade aods ol
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distinct variables used (see the review of
PAYRBO0, pp. 261-263).

Since decision trees model multistage
branching decision processes, they find a
particularly important application in se-
quential, or more precisely, hierarchical,
pattern recognition (see KANAT9 for some
general considerations about the advan-
tages of hierarchical approaches). In the
simplest case, a pattern recognition prob-
lem is deterministic and reduces to an iden-
tification problem. In general, however, a
type (called a class) of objects is not abso-
lutely characterized by selected combina-
tions of test values (called features); rather,
the problem is of a statistical nature such
that each combination of features is distrib-
uted among all the classes. (This model of
probabilistic identification also corresponds
to the fuzzy decision tables discussed in
KANDS80.) If the set of features has suffi-
cient power of discrimination, the probabil-
ity distribution of each combination of fea-
tures will exhibit one strong peak for some
class, so that an object possessing this com-
bination of features can be classified in that
class with a low probability of error. At
times, however, it may be advantageous to
trade accuracy for speed and allow an ob-
ject to be classified in a patently wrong
class in order to gain on response time. As
a consequence of this additional freedom,
decision trees for pattern recognition pur-
poses are subject to yet another optimiza-
tion criterion: minimum overall probability
of misclassification.

Example 13

Consider the following simplified pattern
recognition problem with three classes, C,,
C,, C,, and three binary features, x;, x2, Xs.

The testing costs of the three variables
(features) are

&t X311 x—2 x3-3,

and the probability distribution on the vari-
ables’ space is given by

pe (0,0,0) — 0.10 (1,0,0) — 020
0,0,1) —» 020 (1,0,1) - 0.10
(0,1,0) — 0.10 (1,1,0) — 0.10

0,1,1) - 005 (1,1,1) — 0.15

The distribution of each combination of
features among the classes is given below,

Computing Surveys, Vol. 14, No. 4, December 1962
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614 <+ Bernard M. E. Moret

where the probability that a given combi-
nation corresponds to class i is given by the
ith value of the triple:

. pe (0,0,0) — (0.10, 0.85, 0.05)
(0,0, 1) — (0.01, 0.98, 0.01)
(0, 1, 0) — (0.20, 0.10, 0.70)
(0, 1,1) - (0.80, 0.10, 0.10)
(1,0, 0) — (0.80, 0.10, 0.10)
(1.0, I) — (0.90, 0.05, 0.05)
(1,1, 0) — (0.05, 0.05, 0.90)
(1,1, 1) — (0.10, 0.00, 0.90)

The two distributions allow us to compute
the a priori probability of each class, that
is, the probablity that a unknown object
belongs to that class: .

p(C) = 0342
p(C2) = 0.326
p(Cs) = 0.332

Since each combination of features must be
classified in some class, the strategy that
" ‘minimizes the probability of misclassifica-
tion is obviously to classify a combination
of features in the class for which it shows
the largest probability; thus we get the as-
signment

f: (01 o’ o) - C2
(on 0’ 1) - C2
(o! 11 0) - 03 (1, 11 0) - CS
0,L,1)-C (1,L,1 > G

Hence the probability of misclassification
of an object with the combination of fea-
tures (0, 0, 0) is 0.10 + 0.05 = 0.15; since
that combination of features occurs with a
probability of 0.10, it contributes a total of
0.10.0.15 = 0.015 to the overall minimal
probability of misclassification. Working
similarly with the other combinations
of features, the latter probability is found
to be

(lv o) o) - Cl
4,0,1) -

Pe,, = 0.134.

A decision tree with that overall probability
of misclassification is shown in Figure 10a,
together with the probability of its leaves;
this tree has an expected testing cost of 4.
- A different tree is pictured in Figure 10b;
‘this tree classifies the combination (0, 1, 1)
in class C;—clearly not an optimal choice
in terms of classification accuracy. How-
ever, this tree has an expected testing cost

Computing Surveys, Vol. 14, No. 4, December 1982
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(a) (b)

Figure 10. The two decision trees for the pattern
recognition problem of Example 13: (a) with minimum
p?lsibility of error; (b) with trade-off for more effi-
ciency.

of only 2.6, and its overall probability of -
misclassification is found to be 0.164, barely
larger than optimal. Thus it is a difficult
task to decide which tree is best; other
criteria must be used, such as penalties due
to misclassification or maximum permissi-
ble response time. O

Faced with such a variety of design cri-
teria, researchers in the field have explored
different routes. A tree is often synthesized
directly from the problem without attempt
to optimize its testing cost, but using heu-
ristics designed to minimize the probability
of misclassification [You76, Roun79).
Hauska [Haus?5] and Wu [Wu75] de-
scribed a local optimization algorithm,
based on measures of interclass separation,
for the semiautomatic design of a decision
tree from a known set of features. When
the features are known in advance, a pro-
cedure based on dynamic programming due
to DATTS1 can be used to build a decision
tree with minimal cost, in which the cost
criterion includes the expected testing cost
and the cost of misclassification; a sirnilar
approach based on game theory was de-
scribed in SLAG71 and a third in KULK76.
When the class assignments are made (and
the probability of misclassification there-
fore fixed), the pattern recognition problem
reduces to the description of a (partial)
function; BELL78 models this case by deci-
sion tables and discusses their conversion
to sequential testing procedures (although
the optimal algorithm of BAYE73, PAYH77
is not mentioned). The accuracy of decision
tree classifiers depends upon such consid-
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erations as sample statistics (e.g., sample vestigated the use of binary decision dia-
size) and the number and intercorrelation grams (with a slightly different definition)
of features; KULK78 studied the problem in testing digital systems.
under simplified assumptions and con- In conjunction with the evaluation of
! cluded that hierarchical classifiers, as their Boolean functions, it must be noted that
single-stage counterparts, may suffer from almost all Boolean functions have a pessi-
'. the “dimensionality” problem, that is, show mal worst-case testing cost (i.e., all vari-
! decreasing performance if the number of ables are tested on at least one path). This
] features is increased beyond a certain result, due to RIVE76a, was later comple-
: threshold (which depends on the sample mented by MoRESIb, who proved that all

size). symmetric and all linearly separable (also A
called threshold) Boolean functions possess SN
® 4.2 Logic and Program Design this property. An important consequence of oienad

We mentioned previously that decision tllaese resullt.s 18 gm.t syn(f:hg::;us n;::lnt.i- l 3
trees and diagrams for Boolean functions P, ®X. Imp emen tions o t be ean func- AN
naturally give rise to multiplexer imple- :«:&s n mo:tmﬂ g ti‘;?nmeddela
mentations. Such implementations are at- respec propaga Y,

<. . PR i i i i ! t
tractive since the resulting circuits have few :::: g:::r{h‘: i«:t;r:;xzed by the longes

interconnections and lend themselves well ; Rt L
o largo-scal inusgasion (for instance bi- 1, oL8 L) SCoo S 20 2o ot ]
trees form an efficient interconnection (as advocated in PRAT7S, where they are BN

paiers (lonogt), Morovr, muleser - "0 G, o prioa b o
modules (ULMs) [TABL76, VoLT77), there- relation in Iaqovs schemata [IA}{OSQ]. It el
by reducing the number of basic compo- :xhcill‘ :;cuolees mtm?mt?;ec%mz;’, ltti;n-
nents needed for logic design. ctures, is, to decide whether

Decision tree representations of Boolean i’r f‘flt.tfi:o dg‘l:is;'??s m l;‘:eNelg-ul:Z:ci
functions exhibit several advantages over o 78 _11):0 BLUMBO described
Boolean formulas. Lee [LEE59] showed [l;‘gl?'r i ov:xmﬂ'th:uul e&cn . an
that at most O(2"/n) diagram nodes are le cient aglgon b bxfms;c:ﬁs e equli‘iml;
required to represent any Boolean function ence problem proba y (i.e., whic

. . ides an answer correct within a given—
of n variables, which compares very favor- provi
ably with the O(2"/log n) operators that and refinable—percentage of error).
may be needed by an unfactored Boolean
formula [SAva76). Moreover, every opera- 4.3 Analysis of Algorithms
tor of the Boolean formula must be carried
out in order to evaluate the formula, so that 'The worst-case number of tests (the height)
up to O(2"/log n) operations may be per- of a decision tree indicates a minimum
formed, while a decision diagram will never number of argument evaluations that must
require more than n variable evaluations. be performed in order to compute a func-
Thus decision diagrams express Boolean tion. As such, finding the minimum height
functions at least as compactly as Boolean of any tree representation of a function is
formulas and are greatly more efficient as & useful technique for deriving bounds to
an evaluation tool. (The latter property is be used in the worst-case analysis of algo-
used, e.g., for the repeated evaluation of rithms. The previously mentioned results
Boolean queries in a large database of RivE76a and MoReS1b, showing that
[(WonG76).) Finally, decision diagrams lend large classes of Boolean functions require
themselves to composition and recursion, any decision tree representation to have
as are shown in the next section, while the maximal height, are an example of such
same operations are very difficult to carry analysis; indeed, RivE76b built upon these
out using formulas. Some of those advan- results to prove some lower bounds on the
tages were rediscovered and some pointed complexity of graph algorithms based upon
out for the first time by AKER78, who in- a matrix representation.
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from the subset assigned to that combina- then possible to design highly specialized
X tion by the relation. Since combinations of tests. The first step in such a design consists
- variables for which the function (relation) of a single decision tree; most of the leaves
: _ is not defined are usually allowed to take of the tree, however, do not give a value,

any convenient value, we may assume that but rather designate another decision tree

such ‘ombinations are in fact related to the to be used in the second step. Thus one can
) . whole set of values. Another consequence stop the evaluation upon reaching a leaf of
' of our assumptions is that a relation is the first tree, taking the “name” of the

constant exactly when the intersection of second tree as the result of the evaluation,

Computing Surveys, Vol. 14, No. 4, December 1982
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The worst-case number of evaluations
must be at least equal to the ratio of the
initial ambiguity of the function to the up-
per bound on the information supplied by
each evaluation. Since the evaluation of a
k-ary variable provides at most log: & bits
of information, the height of any tree for a
function, f, or k-ary variables, must obey
the relation

Ruin = H/log: k. (10)

This relation has been used to provide
lower bounds on the complexity of several
combinational problems, such as sorting
[KNUT71] and various set operations
[REIE72]. The decision tree approach has
recently been generalized to handle proba-
bilistic, nondeterministic, and alternating
models of complexity [MANB82].

S§. RECENT DEVELOPMENTS
5.1 Composition and Recursion

The decision diagram model of representa-
tion as described so far is limited to (partial)
functions. Several extensions have recently
been proposed to include composition of
diagrams [AKER78, MORESOb] and model-
ing of relations and simple recursion
{MoRESOD].

Whereas a function assigns at most one
value to each combination of variables, a
relation may assign any number of values,
that is, any subset of the set of values.
Thus, in particular, a relation accurately
models an ambiguous decision table, where
the same rule (the same combination of
variables) may specify more than one set of
actions. In accordance with KING73, we
assume that, when inconsistent rules apply,
any of the assigned action sets may actually
be chosen for execution. In terms of rela-
tions, a decision tree implementation can
choose to specify for each combination of
variables any (or some, or all) of the values

the subsets of values assigned to all the
combinations of its variables is not empty
{for one can choose to use any of the values
present in the intersection for each of the
combinations of variables, thereby effec-
tively transforming the relation into a con-
stant function). Under such assumptions,
all of the results discussed so far apply to
the representation and evaluation of rela-
tions [MORESOb].

A particularly important tool in the anal-
ysis of problems is decomposition, which
tries to simplify a problem by partitioning
it into smaller parts (the rationale being
that the complexity of the whole is more
than the sum of the complexities of its
parts); “divide and conquer” is a time-hon-
ored aspect of decomposition. Conversely,
composition is an important tool in synthe-
sis. We have seen that decision trees induce
a natural decomposition—Shannon’s de-
composition; thus it remains to demon-
strate how to compose decision trees and
diagrams. Two such compositions can be
distinguished: leaf composition and node
composition.

Leaf composition stems from the simple
hierarchical idea of a “tree of trees.” As an
example, consider a pattern recognition
problem such as bird identification. To
most of us, identifying a bird as a “sparrow”
or a “dove” is sufficient; to a bird watcher
or an ornithologist, however, this is a vague
classification that must be greatly refined
to include species and subspecies. This sug-
gests a two-step identification, in which a
rough classification is first made, followed
by a highly specialized procedure for fur-
ther refinements. This offers several advan-
tages: (1) it is practical since it can be of
use to both uninitiated and specialists; (2)
it is efficient since the evaluation can be
profitably (for the uninitiated) stopped
after the first stage; and (3) it can be greatly
optimized in the second stage since it is
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or continue evaluation by proceeding to the
second tree. The latter choice results in the
composition of the two trees, and it is called
leaf composition since it replaces a leaf by
another tree.

Formally, then, leaf composition of two
trees is the process of attaching the second
tree in place of appropriate leaves in the
first tree. (The analog in the software world
is a transfer of control between modules
without transfer of information, such as
chaining.) Clearly, the second tree cannot
share variables with the first lest the com-
posed tree test the same variable twice on
some path. A special case of interest is the
composition of decision trees for Boolean
functions, where the second tree is attached
in place of every leaf with the same label in
the first tree. One easily verifies that such
a composition results in a logical OR of the
two functions when the leaves labeled “0”
are replaced, and in a logical AND when
the leaves labeled “1” are used instead.
Moreover, the composition is then com-
mutative (in terms of the function it yields),
just as the logical operation that it imple-
ments. Figure 11a shows two trees, which
are OR composed in Figure 11b and AND
composed in Figure 1lc.

The behavior of the various optimization
criteria under leaf composition is simple.
The storage cost of the composition is the

- sum of the cost of the first tree and, for
each replaced leaf, of the cost of the second
tree. This can be simplified for diagrams;
since only one leaf of each label can exist,
the storage cost of the composed diagram
is just the sum of the costs of the compo-
nent diagrams. The expected testing cost of
the composition is the sum of the cost of
the first tree and of the cost of the second
tree, the latter being multiplied by the
probability that one of the replaced leaves
will be reached. Thus all the techniques
used for the optimization of decision trees
are applicable to the optimization of com-
posed trees (see MORESOD). In connection
with the composition of Boolean decision
trees mentioned above, PERL76 proved
that, on the average, the order of composi-
tion is irrelevant to the expected testing
cost of the composed tree. (Notice, how-
ever, that this is clearly not the case for the
OR compositions illustrated in Figure 11b.)

Decision Trees and Diagrams .
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Figure 11. An example of leaf compoeition: (a) the
two functions; (b) left and right OR compositions; (c)
left and right AND compositions.

Whereas the rationale behind the leaf
composition was the progressive refinement
of function values, node composition intro-
duces a refinement of the values of the
variables. Thus the former is associated
with an explicit tree hierarchy, while the
latter induces a functional hierarchy. In a
node composition, a k-ary variable is re-
placed by a tree with at least one leaf la-
beled with each value from 0 to & — 1; this
tree specifies how to evaluate the variable
it replaces. (Thus the software analog is the
use of an auxiliary procedure that returns
a value, i.e., a subroutine call.) The effect
of node composition on functions expressed
by formulas is just the substitution in the
first function’s formula of the second func-
tion’s formula for each appearance of the
node variable. In terms of trees, the com-
posed tree is obtained by using the follow-
ing procedure for each occurrence of the
specified node: replace the node by the
second tree and attach the jth subtree of
the node to each leaf labeled j in the second
tree. As for leaf composition, the trees used
in node composition must not share any
variable. Figure 12 illustrates a node com-
position. Akers [AKER78] proposed this
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Figure 12. An example of node composition: (a) the
trees for the function (left) and the variable (right);
(b) the composed tree.

composition and studied its use in the de-
sign and analysis of logic functions.

It is noted that the behavior of the opti-

mization criteria under node composition is
somewhat complex. While the diagram
storage cost of a composition is simply the
sum of the cost of the first diagram and, for
each replaced node, of the cost of the sec-
ond diagram, the other costs depend on
exact structure of the second tree. In par-
ticular, it is necessary to know how many
leaves of the second tree share the same
label, say label j, since the jth subtree of
the replaced node will be attached to each
of these leaves. However, the optimization
methods described in this article can be
applied with suitable modifications.

Both modes of composition can be used
at once. Recent research on the problem of
bacteriological identification in a clinical
environment [SHAP81] suggests as the ini-
tial model a user-specified identification
tree that simply describes a hierarchy of
classes and subclasses of bacteria (as deter-
mined by local factors such as common
mode of treatment in initial stages, like-
lihood of occurrence in the geographical
area, etc.). The hierarchy involves leaf com-
position, while the actual tests to be used
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for identification are specified by node com-
position. "

In discussing both modes of composition,
we have purposefully avoided a delicate
problem: What if a tree is composed with
itself? In such a case, the leaves or nodes of
the first tree are replaced by the identical
tree, so that more replacements are possi-
ble, and so0 on. This creates an infinite re-
cursion, giving rise to an infinite tree (or a
diagram with cycles). Although composing
a tree with itself may appear contrived,
recursion is a sufficiently fundamental phe-
nomenon that a study of its effects on de-
cision trees is warranted. Unfortunately,
very little work has been done in this area.

Moret [MORESOb] studied the recursion
due to a single leaf composition and showed
that the concepts of expected testing cost,
diagram storage cost, and activity can be
extended to such simple recursive trees.
Although the tree storage cost is clearly
infinite, as is the worst case testing cost,
the expected testing cost is generally finite.
This stems from the fact that there usually
is a nonzero probability, call it e, of reaching
a nonreplaceable leaf in the component
tree, so that the probability of recursing
one level, 1 — e, is less than one. Now, the
probability of recursing % levels is just
(1 — e)*, so that the average number of
recursion levels used before termination is

hnt 1
- —-— ‘ T
Fev *2_:0 (1—e) =

This factor can be used for transforming
the expected testing cost of a single, non-
recursive copy of the tree into the expected
testing cost of the recursive tree; the activ-
ities of the variables can be computed sim-
ilarly.

5.2 Applications to Testing

Decision trees have long been used for pur-
poses of fault diagnosis, as previously seen.
Such uses, however, apply decision trees to
the analysis of a discrete function which is
not that which they represent. Akers
[AKER78, AKER79] proposed that binary
decision diagrams be used as the basis for
developing tests for the Boolean function
which they represent. Some of the reasons
given have been discussed above, such as
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compactness, good structure, and existence
of composition. Other reasons include the
close relationship between binary decision
diagrams and standard logic design and the
ease of automation in handling diagrams.

Moret [MORES1a)] advocated the use of
decision trees as alternate models for sys-
tem analysis. A standard tool in the analysis
of system reliability is the fault tree
[BARL75], which is just a graphical repre-
sentation (using AND and OR gates) of the
Boolean function describing a system’s
state in terms of the state of its components
(where the only possible values are
“working” and “failing”). Fault trees are
used for the assessment of the overall reli-
ability of a system and of its sensitivity to
the state of various components. The same
analysis can be performed using decision
trees and activities, with added advantages;
(1) as seen, decision trees are more efficient
than formulas (which is essentially what
fault trees are); (2) decision trees can be
used for multivalued functions, whereas
fault trees are restricted to Boolean func-
tions; and (3) decision trees can include
recursion and general composition opera-
tions, while fault trees are limited to an
equivalent of node composition. A possible
drawback, however, is that the manipula-
tion of Boolean formulas, while inherently
inefficient, is well understood and has
been successfully implemented (e.g., see
WORR75), whereas that of decision trees is
still in its infancy.

6. CONCLUSION

This article has provided a unified frame-
work of definitions and notation for deci-
sion trees and diagrams; it has examined
the problem of optimization, reviewed the
main applications and contributions, and
described some recent developments. While
often difficult to optimize, decision trees
and diagrams emerge as efficient represen-
tations of discrete functions, of particular
interest in pattern recognition, logic design,
programming methodology, and system
analysis. Although several research pro-
grams are actively concerned with decision
trees, further areas of study have been iden-
tified, notably the quality of optimization
heuristics and the use of general recursion.
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The use of activity in testing digital and analog systems.*

Bernard M.E. Moret*. Michael G. Thomason*. and Rafael C. Gonzalez®

Abstract

With Fhe advent of large scale integration, testing methods must be developed
which rely solely on the input-output behavior of systems, thereby requiring an
implementation-independent model of system behavior. Such a model, the decision
tree, which has proved of great use in many areas of Computer Science, is briefly
presented. Using this model, a measure of the comp1exit¥ of multiva]ued,discréte
functions is developed, as well as a measure.of the contribution of individual
variables tc the overall complexity. The latter concept, the activity of a variable,
is shown to have considerable potential fpr the design of incomplete testing proce-
dures. In pa;;icu1ar, exercising those variables whfch have the largest activity
maximizes the probability of error detection in systems with equally likely faults.
Finally, activity is showr to be a powerful tool for the analysis of multivalued
fau1t-tr§es, thereby allowing the application of some digital testing techniques to

ana169 systems modelled by multivalued functions.
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Introduction

As tﬁe size and complexity of new integrated systems increase, the need arises
for methods of analysis: testing, and design which are implementation-independent,
using only inpﬁt-output specifications. Of particular importance is the ability to
evaluate the complexity of a problem, as well as how individual variables contri-
bute to it, in order to select an appropriate set of analytical tools and establish
guide11nes-for testing and design procedures.

One imp1ementii{on-independent ﬁode1 of discrete function evaluation, the de-
cision tree, has long been used in Computer Science for establishing lower bounds
on the.compiexity of problems (e.g., Knuth 71), designing switching circuits (e.g.,
Cerny 79), or establishing classification prqcedures for pattérn recogniiion (Bell
78) and machine diagnosié (Chang 70). A decision tree is.essentially a sequential
evaluation pr&cedure. whereby the value of a variable (test) is dete}mined and the
next action (to select another variable to evaluate or to output the value of the
system's function) {is chosen aqcording1y. In particular, decision trees can be used
to determine the state of a system (Halpern 74); Figure 12 shows a possible decision
tree for the state of the simple system pictured in Figure 1b. |

In a previous investigation (Moret, Thomason, and Gonzalez 80, 81), the authors
generalized the decision tree model to include composition and simple recursion, thus
allowing the modelling of hierarchical systems with simple feedback. They also de-
veloped a new complexity measure for discrete functions, the intrinsic cost, as well
as a measure of the contribution of a variable to the complexity of the fuﬁction,
and showed the close relationship existing between these measures and the decision
tree model. As detailed below, the concept of activity shows considerable potential

as a tool for system testing.

Activity and incomplete testing

In an input-output system, a failure is characterized by a deviation from the

expected output signal (that is, a different value for discreta systems and a value
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out of tolerance for analog systems). This approach is known as signal reliability

(Koren 79), in contrast with the conventional functional reliability, which considers
all internal (and possibly non-critical) system faults. Signal reliability is thus
more accurate and better suited to large integrated systems. -~

The thorough testing of a system can only be done by exhaustion; such én approach,ﬁ;géf
however, is unfeasible for all but the simplest systems. Thus one is forced to use i
some methods of fncqmplete testing. In the case of combinational (i.e., memoryless)
discrete circuits, (Losq 78) has shown that random compact testing, a method which
applies a sequence of random input vectors to a system and compares some output sta-
tistics with those gathered from a perfect (“gold") unit, can yield very reliable
estimates at only a small fraction of the cost of exhaustive testing. Often, how-
ever, such a method is inapplicable, because-not all inputs are controllable; in a
system with memory (feedback), for instance, the values of the feedback variable
often cannot he either éxamined or modified (as illustrated in Figure 2).

When only a fraction of the variables is accessible or when only the most "“im-
portant" variables must be tested, exhaustive testing can be used with a selected
subset of variables. Such a subset must be chosen such that the probability of de-
tecting a malfunction is maximized. The authors have shown that when all ma]func-
tions are equally likely, such a subset must consist of these variables which have
the'ﬁargest activity (Moret 80). Thus the activity of a variable measures, fn some

sense, how important a variable is to the correct functioning of a system.

Activity and fault trees.

A complex system is rarely specified as a whole, but is conceived as a structure

of simpler subsystems which interact by communicating the values of variables. Reli-
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ability analysis is then carried out on the structural relationships by representing
each subsystem by a single variable qualifying its operating state; when such vari-

ables are binary, taking the values "works" or "fails", this leads to the fault tree

model, which. has found widespread use in industry (Fussell 79, Reactor Safety Study
75, Lapp 77).
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;(- A fauIt tree is essentially a Boolean function describing the set of conditions o
(on the subsystems) necessary to make a complete system fail. Figure 3 shows a possi- 1£ti
ble fault tree for the system of Figure 1b. OQbviously, each subsystem can in turn Lk
ic be def:omposed and modelled in the séme way. Fault trees are used to determine the
' probability of failure of a system as well as for the study of the role of individual
subsystems. A tool commonly used for the latter purpose is the Boolean differential
.' calculus (Bennetts 75, Thomason and Page 76). The Boolean difference of a Boolean
: function, ¥ , with respect to one of its variables, x, is the function:
df/dx = flyz0 @ f|x=o

where @ denotes summation modulo 2. It is well known that df /dx=1 exactly when

critically depends on x, so that the probability that a'system representéd by {
fails due to the failure of subéystem X is .

prob(df/dx=1)« prob(x fails).
The Boolean difference is closely related to the activity of a variable (Moret,
Thomason, and Gonzalez 80): when all probabilities are equal, the activity of vari-

able x reduces to prob(df/dx=1).

Thus the activity of a variable is a natural extension to Boolean difference

analysis; unlike the latter, it is applicable to arbitrary multivalued functions
(as opposed to multi-valued logic (Bell, Page, and Thomason 72)), which makes it the nf
tool of choice for the analysis of multivalued fault trees. ;f

Apolications to Analog Systems

In analog systems, it is often difficult to decompose a system so that its com-

Fit_ ponents can be characterized as either perfect or faulty. Rather, the observed out-

put signal deviates in some measure from the ideal output. Small deviations are Eﬁ;ﬁ
Lj potentially acceptable and large ones probably not, but there is an intermediate zone i;l;:
5 RN

> in which a signal can be just above tolerance without falling in either category. ~——
This situation s summarized in Figure 4. S

It s conceivable that a cascade of two subsystems, each of which i{s above
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tolerance but not faulty, results in a faulty system. In order to model this situa-

tion, a subsystem must be described not. by a binary variable, but by a multivated
variable, taking for instance the values "fault", "below tolerance”, "above toler-
ance", and "perfect." Then the failure function is not a Boolean function but a
general discrete function; fault tree models must be generalized and Boolean calculus

1s no longer applicable, so that activity becomes the main tool for analysis.

Conclusion

The activity of a variable, a new concept which measures the contribution of a
variable to the (testing) complexity of a discrete function, has been introduced.
It has been shown to be of great potential as a tool for the analysis and the testing

of both discirete and analog systems.
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works fails
(B) |system fails|
works fails
] {system works|
works fails
|system works| [system fails|
(a)
>1 B
inPu_t X =3 A ——>> Y output
> C
(b) "

Figure 1. A possible decision tree (a) for a simple system (b).
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rigure 2. A gstem with memory (fTeecback) shcwing inaccessible internal
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IB fails] [C fails]

Figure 3, A fault tree for the system of Figure 1b.
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Figure 4, Subdivisions of the range of an analog signal.
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OPTIMIZATION CRITERIA FOR DECISION TREES

Bernard M. E. Moret t
Michael G. Thomason *
Rafael C. Gonzalez

ABSTRACT

Decision trees are a model of the sequential evaluation of discrete functions that
have widespread applications in pattern recognition, taxonomy, decision table program-
ming, databases, switching theory, and concrete complexity theory. Since a function in
general has numerous decision tree representations, it is necessary to adopt some selec-
tion criterion in order to obtain the most appropriate representation. Several such
optimization criteria have been proposed in the literature, but few have been studied
together and the choice of a criterion has not often been directly addressed.

This paper regroups those criteria into a common, generalized framework, and exam-
ines their interrelationships. It is shown that, even in the simplest cases, most criteria
cannot be optimized simultaneously, thereby disproving some conjectures found in the
literature. Two new results are presented concerning the worst-case number of argument
evaluations for Boolean functions. On the basis of the accumulated results, it is argued
that two optimization criteria have widespread relevance; the computational complexity
of these criteria is examined in detail.

Key Words and Phrases: computational complexity, decision diagram, decision tree,
exhaustive Boolean function, identification tree, optimization criterion, sequential
evaluation procedure, storage cost, testing cost.

CR Categories: 3.63, 3.7, 4.33, 4.34, 4.8, 5.39, 6.1, 8.3.

This work was supported by the Office of Naval Research, Arlington, Virginia, under
contract No. 0014-78-C-0311.

t Department of Computer Science, Um;venity of New Mezico, Albuquerque, NM 87131.

t Departments of Computer Science and of Electrical Engineering, University of Tennessce,
Knozville, TN 87916.

.......................
.....................
-----------------

..'..‘. LA




1. Introduction

A decision tree is a model of the evaluation of a discrete function, wherein the value of a
variable is determined and the next action (to choose another variable to evaluate or to
output the value of the function) is chosen accordingly. Decision trees have many appli-
cations in pattern recognition [20,25], taxonomy and identification [5,6,11], decision
table programming [1,15,16,21,22,24,26,28], switching theory [2,3,4,13], and analysis of
algorithms {23,27]. More recently, they have been proposed as implementation-
independent models of discrete functions with a view to the development of new com-
plexity measures [18].

Since variables can be tested in arbitrary order during the sequential evaluation pro-
cedure, a given discrete function has, in general, numerous decision tree representations.
Thus, it is necessary to develop some criterion for the selection of an appropriate tree,
that is, to develop some measure on decision trees. Several mesures have been proposed
in the literature [8,13,21,22], and the multiplicity of criteria presents the user with a
problem of choice,

This article discusses several of these measures within a common framework of
definitions and notation. After providing a formal definition of decision trees and
expressing the various proposed criteria in the established framework, we briefly review
the published optimization algorithms to place the optimization problem in perspective.
The relationships between measures are then studied, beginning with the simplified case
of Boolean functions (the case that is least conducive to incompatibilities). It is shown
that, even in this case, almost all criteria are pairwise incompatible, that is, they cannot
be simultaneously optimized for all functions. This disproves some conjectures found in
the literature [2,28]. The special case of binary identification is then separately exam-
ined. Finally, we discuss each criterion in turn and examine its computational complex-
ity. Several criteria are found to have limited applicability due to their specific behavior;
in particular, we extend a result of Rivest [23] by showing that all symmetric and all
linearly separable Boolean functions are exhaustive, i.e., have maximal worst-case test-
ing cost. We conclude by suggesting that two specific measures, related to run-time cost
and ‘retention cost of trees, are the most generally useful optimization criteria at this
time.

2. Preliminaries
The following formal definition of a decision tree appears in (18,19).

Definition 1. Let f be a (partial) function of discrete variables, z,, . . ., z,, where vari-
able z; takes on m; values (denoted O, ... ,m;-1). If f is a constant, then the decision
tree for f consists of a single leal labelled by that constant; otherwise, for each
7;,1<¢{<n, { has decision tree(s) composed of a root labelled z; and m; subtrees
corresponding to the restrictions . (hereafter called subfunctions) f|,. ,-.
/| ;,=m,-1, in that order. (]

4
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It is noted that the same subtree may occur on several branches of the tree, in which
case it may be desirable to use only one copy of that subtree by transforming the deci-
sion tree into a decision diagram with a rooted directed acyclic graph structure. To
every decision diagram there corresponds a unique decision tree with a ome-to-one
correspondence between its paths and those in the tree.

Two costs are usually associated with each variable of a function: a testing cost
measures the expense (in time or any resource associated with evaluation of that vari-
able) incurred each time that variable is evaluated; and a sforage cost measures the
expense (in storage or any resouice associated with the presence of that test) due to the
presence of each test node labelled by that variable. In addition, a probability distribu-
tion is often specified on the variables’ space and can be assumed uniform if not other-
wise known. These data allow the computation of the following six measures.

Definition 2.

i)  The total testing cost, ), iz the sum, taken over all the paths from the root to the
leaves, of the path testing costs, where the testing cost of a path is the sum of the
testing costs of the variables evaluated on that path. When all testing costs are
unity, n reduces to the external path length [12], itself a special case of the tree
path entropy defined in [8]. :

ii) The normalized testing cost, H, is the total testing cost divided by the number of
paths. When all testing costs are unity, H reduces to the average path length,
itself a special case of the normalized tree path entropy [8).

iil) The worst-case testing cost, h, is the maximum path testing cost. When all testing
costs are unity, h reduces to the worst-case number of tests, that is, the height of
the tree or diagram.

iv) The expected testing cost, E, is the expected value of the path testing cost, where
the probability of a path is the sum of the probabilities of all the combinations of
variables’ values that select that path.

v)  The tree storage cost, a, is the sum, taken over all the internal nodes of the tree,
of the storage costs of the associated variables. When all storage costs are unity, a
is the total number of internal nodes of the tree.

vi) The diagram storage cost, §, is the same sum as in (v) taken over all the internal
nodes of the diagram. (J

It is noted that, in the case of unity testing and storage costs and uniform probability
distribution, the only datum needed to compute the first five measures is the number of
leaves at each level of the tree. Thus, a decision tree for a function of n variables can be
entirely characterized by an (n+1)-tuple, (Ag, . . . ,\,), where ); is the number of leaves
at level i. This notation is called the leaf profile [18] by analogy with a similar notation
defined in [17]. The leaf profile induces a lexicographic ordering of decision trees, which
in turn gives rise to two additional measures: the mazimum profile, which ranks as best
that tree which is largest in lexicographic order (on the grounds that leaves should be
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encountered as soon as possible); and the minimum reverse profile, which ranks as best
that tree which is smallest in reverse lexicographic order (on the grounds that the
number of long paths should be minimized).

P As an example of the above concepts, consider the Boolean function of four variables
given by the formula,

I (21,22,23,29) = 7123 + 2,24 + T2,

k N Figure 1 shows a decision diagram and its corresponding decision tree for f; the various
measures are as follows:

external path length, p = 17;_

average path length, H = 2.83;
expected number of tests, E = 2.375;

L tree node count, a = 5;

diagram node count, 8 = 4;

leaf profile = (0,0,3,1,2).

In [18,19], decision trees and diagrams are extended to include composition and recur-
b siveness, and it is shown that the measures defined above can be applied to this general-
ized case.

An interesting application of discrete functions is that of binary identification. As
defined in [6], ah identification problem consists of a set of objects, a set of binary ques-
tions, and an injective map from the set of objects to the power set of the set of ques-
tions; the image of an object is then the unique combination of positively answered
questions which identifies that object. In the context of this paper, the questions are
binary variables and the objects are values of a bijective partial function from the vari-
ables’ space to the set of objects. It is readily seen that all decision trees for such a fune-
tion have exactly one leaf for each object and thus have all the same number of nodes.
Moreover, the fact that no two leaves have the same label means that there cannot exist
common subtrees, so that all decision diagrams are in fact trees and, for each diagram,
A=a. By reason of these and other peculiarities, the case of binary identification will be
treated independently in Section 5.

3. The Construction Of Optimal Decision Trees And Diagrams

The problem of constructing decision trees and diagrams that are optimal with respect
to the various criteria has been addressed by numerous researchers using branch-and-
bound techniques, dynamic programming, and various heuristics. A survey of their
efforts can be found in [18].

Dynamic programming is of particular interest because several measures obey the
» “‘principle of optimality,” that is, they have the property that an optimal solution can
be built from optimal subsolutions. Indeed, if variable z;, with testing cost ¢ and
storage cost g;, is tested at the root of a decision tree for the function f(z,,...,2,), then
the optimal values for such a tree for three of the measures are
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where p(z;=j5) denotes the probability that z; takes on the value j. Similarly, the leaf
profile of this tree is the sum, component by component, of the leaf profiles of its sub-
trees. Hence, five out of the eight proposed measures obey the principle of optimality.

This approach is embodied in an algorithm designed to convert limited-entry deci-
sion tables into decision trees with minimal expected testing cost [1], later rediscovered
[24] and refined {15]; a closely related procedure appears in {20]. This algorithm is easily
adapted to any of the five possible criteria and to the most general type of decision tree
[18]. For a function of n k-ary variables, the algorithm requires O(n -(k+1)*-!) steps;
since a complete specification of the function necessitates an input of size s = O(k*),
the time complexity is O(sb“(""'“ -log 8). Dynamic programming offers an efficient
solution to the optimization problem for those measures in the case of completely
specified functions.

In the case of binary identification (and, more generally, of partial functions), how-
ever, a similar dynamic programming algorithm [6] is of exponential complexity because
the specification of the problem is very much shorter than for complete functions, result-
ing in a much smaller input. Indeed, it has been proved [10,14] that the problem of con-
structing binary identification trees with minimal expected testing cost is NP-hard.

The remaining three measures, ,n,and H, are not easily optimized. Branch-and-
bound techniques, used for the optimization of E [3,21], have also been applied to the
minimization of storage cost [22] for both trees and diagrams; however, such procedures
are of exponential complexity. Little work appears to have been done on the optimiza-
tion of n and H.

4. Compatibility Between Optimization Criteria

In this section, attention is focused on relationships between existing optimizaion criteria
for the construction of decision trees. :

4.1 Definitions

Given a function, f, and an optimization eriterion, w, let T’ denote the set of all tree
representations for f which optimize w.

Definition 3. Let F be a class of functions and ¢, w two optimization criteria. Then we
say that, for that class of functions: -

i) ¢ and w are equivalent, denoted Ye>w, it Y/ eF, TY = T}
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i) ¢ is aspecial case of w, denoted ¢ <= w, if VfeF, T D Tf.
iii) ¢ and w are compatible if VfeF, TP Tf # 0.0

Moreover, we shall say that ¢ and w are strictly equivalent if they are equivalent and the
ordering of all the tree representations for any function in F is the same under both cri-
teria.

It can now be shown that, in almost all cases, criteria are pairwise incompatible even
in severely restricted classes of functions.

4.2 Results

We first examine the case that is least conducive to incompatibilities, namely that of
completely specified Boolean functions with uniform probability distribution and unity
costs. Figure 2 summarizes the findings for that class of functions (a 0 entry means that
the respective criteria are incompatible and a blank entry indicates that the exact rela-
tionship is unknown). Thus, most criteria are pairwise incompatible. In particular, a is
not a special case of E; this can be seen by examining the trees for the Boolean function
of four variables given by the formula .

1(21,32,23,3‘) = 3132'*'?123"' 225324,
and thereby disproves conjectures found in [2, p.115 and 28, p.104].

We proceed to prove some of the relationships; other relationships appearing in Fig-
ure 2, but not explicitly proved in the text, are easily established by similarly con-

structed counterexamples.

Proposition 1. The maximum profile is incompatible with any other measure.
Proof: Two counterexamples will be used. First, let f, be the Boolean function of four i'_-l::-ﬁ?
variables given by the formula RN
fo(21,22,23:2¢) = T 23+ 212574 + 22737 ':_
The trees with maximum profile have as the first test either z; or z3 and also have
minimal expected testing cost; the optimal tree for all other measures, however, tests z, N
first and is unique (except for the minimum diagram storage cost, which can also be B
attained by testing z; or zy first, but with a structure different from that of the max- el
imum profile trees). The various measures for the three types of trees are listed in e
Table 1. The maximum profile (and, incidentally, the minimum expected testing cost) is RO
thus incompatible with the minimum reverse profile, the diagram storage cost, and the
total, normalized, and worst-case testing costs. Secondly, let f, be the Boolean function . O
of five variables given by the formula v
J4(21,22,23,24,%5) = 2,25+ T\ 53T + Ta25 T2y + 237) + (22 + Tg)(TaZy + 232,). i
The trees with the maximum profile test zg first, while those optimal with respect to all :.
other measures test z, first, with the results shown in Table 2. Hence the maximum BT
profile is also incompatible with the minimum tree storage and expected testing costs. (J P
The function f, above also shows that minimizing the tree or diagram storage costs R
e

N
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Table 1. First counterexample for Proposition 1.
i. First test leaf proﬁle Qmin ,Qmm___rzm H min m Em
. z, (0,0,0,8,0) 7 6 24 3. 3 3.
Z 0r 2y (0,0,1,4,4) 8 6 30 33 4 3.
z; or z3 (0,0,2,2,4) 7 7 26 3.25 4 2.75

does not optimize any other criterion, while f, yields the same conclusion for the
minimum worst-case testing cost.

Proposition 2. The normalized testing cost is incompatible with any other measure
(except, possibly, the worst-case testing cost); moreover, minimizing the normalized test-
ing cost may involve the introduction of redundant tests.

Proof: Let f, be the Boolean function of five variables given by the formula

,c (3112213&24)35) = I1Z, + 22®3&4&5’

where © stands for summation modulo 2. The optimal trees for all measures except H
test z, or z, first and use no redundant test, while the trees with minimum normalized
testing cost may test any variable first and, in case z; or z, is chosen, use a redundant
test. Two diagrams rooted in z; are shown in Figure 3, the left being optimal with
respect to all criteria but H, and the right being optimal for H; the corresponding meas-
ures are listed in Table 3. It is noted that the test of zj as the right child of the root is
totally redundant.

It is conjectured that, among the relationships with unknown status, several implica-
tions hold, most particularly n => a. Clearly, however, the introduction of non-
uniform probabxhty distributions or non-unity costs renders all measures pairwise incom-
patible.

Be”.re discussing the class of all discrete functions with arbitrary probability distri-
butigns and costs, we note the results for the class of partial Boolean functions with
unity costs and uniform probability distribution on the domain, which are shown in Fig-
ure 4. Except for the obvious case of tree height and minimum reverse profile, no meas- e
ure is a special case of any other; in fact, almost all measures are pairwise incompatible. R
The three counterexamples used to establish results beyond those of Figure 2 are omit-

ted here for the sake of conciseness. -

OAE

In the general case, it is easily seen that all measures are pairwise incompatible. In Z:-:.‘.-zli

other words, one must face the problem of the choice of a criterion since, even for the v

simplest types of functions, it is not generally possible to optimize two criteria simul-

. taneously. RO
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Table 2. Second counterexample for Proposition 1.

First test  leafprofle o Brp 9 Hpw by  Eop
7, (00,1,184) 13 8 57 407 5§ 35
z5 (0,0,1,2,2,12) 18 9 76 447 5 3.625

§. The Case Of Binary Identification

The various applicable measures will be examined first under the assumption of unity
costs and uniform probability distribution of objects. Under these conditions, the
storage cost of a tree reduces to its number of nodes (which is fixed, as noted in Section
2), and its expected testing cost is equal to its normalized testing cost, of which the path
length is a fixed multiple. Hence it follows that only four criteria are applicable,
namely, the height, the external path length, and the minimum reverse and maximum
leaf profiles. The known relationships between the four measures are summarized in
Figure 5 and can be established with a single couterexample as follows. Consider the
identification problem with five objects, {a,b,c,d,e}, and four tests, T;={a}, To={a,b},
T;={a,b,c}, and T ={ab,c,d}. The trees with maximum profile test T, or T, first;
those with minimum reverse profile and minimum path length test T, or T; first; and
those with minimum height use any test first (but with different resuits if the chosen
test is T; or T,). The resulting measures are listed in Table 4. The exact relationship
between the reverse profile and the path length criteria is not known; it is a simple
matter, however, to construct an example which shows that they are not strictly
equivalent. The introduction of non-uniform probabilities results in further incompatibil-
ities and one more measure, the expected testing cost. In fact, the only two measures
that are not incompatible are, trivially, the reverse profile and the height. Storage and
testing costs impair the usefulness of leaf profiles (which do not reflect such data), but

give rise to another criterion, the storage cost; all measures are then pairwise incompati-
ble.

Even with unity costs and uniform distribution, the decision problem for the path
length measure is known to be NP-complete [10]. The construction in [10] is a straight-
forward reduction from the exact cover by three sets (cf. [7, p.53]) and can be used to
show that the decision problems for the reverse profile and the worst-case testing costs
are also NP-complete. Finally, the decision problem for the maximum profile is clearly
in NP, but it is not known to be NP-complete. Using standard extension and search
techniques as developed in {7], one can show that the optimization problems for the
storage cost and the total, expected, and worst-case testing costs are all NP-equivalent.
The optimization problems for the profiles are both NP-easy since, although no
polynomial-time algorithm is known for ranking profiles, one can simply use successive

binary searches (one for each tree level) in order to establish the optimal profile. (In~

such a process, only the number of nodes at the searched level is important, so that one
may set arbitrary values at the unknown levels.) Table 5 summarizes the known results
about the complexity of decision tree optimization in binary identification problems.
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Table 3. Counterexample for Proposition 2.

Tree leaf proﬁle amh ﬂm ﬂm H_. ,lm Em
left (0,0,2,00,16) 17 8 84 46 5 35
5 4,

right (0004016 19 9 92 46

8. An Assessment Of Optimisation Criteria

Since the optimization problem for binary identification is NP-hard for most criteria, it
follows that the general problem of optimization for (partial) functions is also NP-hard.
However, there are large classes of functions for which the optimization problem is well-
solved by the dynamic programming algorithm mentioned in Section 3, namely those
functions, the specification of which requires an input of length exponential in the
number of variables. Table 6 shows the complexity of optimization of each criterion in
both cases of exponential- and polynomial-length inputs. It is noted that the optimiza-
tion of normalized and expected testing costs under polynomial-length inputs is not
known to be NP-easy: the arbitrary probability distribution and number of test out-
comes enormously increases the number of possible values, to the point where even a
binary search requires exponential time. '

The difficulty of optimizing the normalized testing cost and its erratic behavior (as
exemplified in Proposition 2, where the addition of a redundant test actually lowers the
normalized testing cost), make it an undesirable criterion. Both leaf profile criteria lack
generality, in that they cannot easily take into account arbitrary costs or probability
distributions; therefore, they too are inappropriate measures, except in special situa-
tions. Finally, the tree storage cost is not an accurate reflection of actual memory or
hardware requirements, becsuse the diagram storage cost is never larger and often much
smaller. For instance, a modulo 2 sum of n binary variables requires O(2") tree nodes,
but only O(n) diagram nodes. The diagram storage cost i3 a more relevant measure of
implementation problems.

Of the three measures of testing cost, only h and E are concerned with the perfor-
mance of a tree representation. The total testing cost, 5, does not make use of the pro-
bability distribution, nor does it measure a worst-case extreme. Although it is of
interest for binary identification problems as a measure of the cost incurred in producing
each output of the function exactly once, it does not generally correspond to practical
concerns that one has about a function. The worst-case testing cost, h, can be
efficiently minimized and is certainly relevant in practical problems; however, it lacks_
discrimination power. Rivest (23] has shown that almost all (in the asymptotic sense)
Boolean functions are exhaustive, i.e., have maximal worst-case testing cost, a result
that we strengthen in the Appendix by proving that all symmetric and all linearly separ-
able Boolean functions are exhaustive. Thus the worst-case testing cost does not
discriminate between most Boolean functions and, within the sets of symmetric and
threshold functions, it does not discriminate between any functions.
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Table 4. The counterexample for binary identification.

P : First test _ Leaf profile Height Path length
Tyor T, (0,1,1,1,2) 4 14
Tz or T3 (0,0,3,2,0) 3 12
T,or T, (0,1,0,4,0) 3 13
b o o |
The preceding considerations indicate that the expected testing cost, E, is the more gen-
erally useful measure of decision tree performance, while the diagram storage cost, S, is
® a relevant measure of decision tree implementation costs. These measures are examined
in further detail in the following section.
. 6.1 The expected testing cost E

Given an intrinsic function of n variables, f(z,,...,2,), for which testing variable z;
incurs cost ¢;, the expected testing cost of any tree representation, T, of f is bounded by

min {¢; | 1i<n} S E(D < Vo
i
These rather loose bounds can be tightened (19] to the following:
1) + min {1y (&) | 1i<n} < B(T) < 356 - max (I () | 1<i<n),
where I(f) is the intrinsic cost of the function .a::i l;(z;) is the loss of variable z; with
respect to the function [19].

In fact, Boolean functions with unity costs and uniform probability distributions
require an expected number of tests that converges to n; this can be shown as follows.
Let B(n) be the number of Boolean functions of n variables and let J(n) be the number
of those that are intrinsic; then

f':(n) =9 and J(n)= .z::o(—l)““'-(}‘)-F(i).

But almost all Boolean functions are intrinsic, so that we have
lim J(n)/F(n)=1 -
8 =00

with rapid convergence. Now, the expected value of E for a function of n variables,

E(n), must be at least as large as

E(n-1) for non-intrinsic functions and equal to 1+E(n-1) otherwise; hence, we have the
) recurrence

E(n) 2 [(F(n)-J(n))-E(a-1) + J(n)-(1+E(n-1)|/F(n) = E(n-1) + J(n)/F(n).

Since J(n)/F(n) rapidly converges to 1, the expected value of E is essentially equal to n
for large values of n.
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Table 5. The complexity of optimal binary identification.

Criterion Quin ~ Nminy Hei E . Apin  Teverse maximum
profile profile
Complexity  NP- NP- NP- NP- NP- NP-

eqvint eqvint eqvint eqvint eqvint easy

This result, however, does not indicate that minimizing the expected testing cost is use-
less, because the presence of non-uniform costs and probabilities results in the large
range of values described by the bounds given above. Moreover, the expected testing
cost can be effliciently minimized, as indicated in Table 6.

The expected testing cost is the most frequently used criterion in the literature. In
software applications, in particular, it is often of more interest to optimize the running
time of a routine than to minimize its memory requirements. More generally,. one
expects to find this criterion useful whenever a premium is placed on performance as
opposed to acquisition cost.

6.2 The diagram storage cost 3

The number of internal nodes of a binary decision diagram has been extensively studied
in [13], where diagrams ere called programs. It is shown that O(2"/n) nodes are_
sufficient to represent any Boolean function of n variables as compared with O(2") for
trees. This result is easily extended to show that O(k"/n) nodes are sufficient to
represent any function of n k-ary variables (versus O(k") for trees) [18]. Thus, in partic-
ular, a decision diagram is as succinct a representation of Boolean functions as is a
simplified and factored Boolean formula.

The minimization of the diagram storage cost, however, is a difficult task. It cannot
be done on a leaves-to-root scan because it requires that all subtrees be examined simul-
taneously. This precludes the use of dynamic programming and necessitates some form
of top-down, backtracking method. Hence it must be suspected that the problem, which
is clearly NP-easy, is also NP-hard (and thus NP-equivalent) even under exponential-
length inputs. Indeed, the only existing algorithm, a branch-and-bound procedure [22],
may exhibit exponential behavior by searching through almost all possible diagrams for
a function.

The diagram storage cost has mostly been used in connection with hardware imple-
mentation of decision trees, such as multiplexer networks for Boolean functions [4,13]. in
general, one expects to use this criterion whenever a premium is placed on acquisition or
construction costs or when special constraints decrease the value of other measures. (An
example of the latter is a synchronicity constraint, which requires all evaluations to take
the same time and thus reduces the expected testing cost to the worst-case testing cost,
h. When h is known to be maximal, as is the case with most Boolean functions, perfor-
mance measures become altogether irrelevant.)




Table 6. Complexity of optimization criteria.

Input size in function of nuiaber of variables

Criterion
exponential olynomial

Qmin low polynomial NP-equivalent

Bemin ? NP-equivalent

Nmin ? NP-equivalent e

Hy ? NP-hard -

| S low polynomial NP-equivalent S

E ;. low polynomial NP-hard T
min. rev. profile  low polynomial NP-equivalent RS
maximum profile low polynomial NP-easy L

7. Summary ) -

Several measures used for the assessment of decision trees have been reviewed. It has
been shown that they are pairwise incompatible in ak but a few cases. This disproves
some conjectures regarding the simultaneous optimization of those measures. Promising
measures have been individually examined and two new results proved concerning the
behavior of one measure in classes of Boolean functions. Based on the results presented,
two measures, one concerning the run-time cost and the other the retention cost of
trees, appear to be the most generally applicable at this time. The complexity of deci-
sion tree optimization under these two criteria was examined in detail.
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Figure 1. A decision diagram (a) and its associated decision tree (b).
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The two diagrams for the counterexample of Proposition 2.
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Figure 4. Known relationships between the eight measures applicable
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Symmetric and Threshold Boolean Functions Are Exhaustive

BERNARD M. E. MORET, MICHAEL G. THOMASON,
" AND RAFAEL C. GONZALEZ

Abstract—The worst-case number of variable evaluations (testing cost) of
Boolean functions is examined. Following up on a result by Rivest and Vuillemin,
we show that all symmetric as well as all linearly separable Boolean functions
are exhaustive, that is, have a pessimal worst-case testing cost.

A ]

Index Terms—Atgument complexity, decision tree, multiplexer tree,
threshold function, worst-case testing cost.

I. INTRODUCTION

Rivest and Vuillemin [5] have shown that almost all (in the as-
ymptotic sensc) Boolean functions are exhaustive, that is, require in
at least some cases that all of their variables be evaluated in order to
find the function's value. Thus it is natural to suspect that there exist
significant classes of Boolcan functions in which every function is
exhaustive. In this correspondence, we identify two such classes:
symmetric functions and linearly separable (also known as threshold)
functions. ' .
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This result has implications in logic design, fault analysis, paucrﬁ
recognition, and analysis of algorithms.

I1. PRELIMINARIES

Let f(xy," -, x,) be a Boolean function of n variables (arguments).
A variable, x; of £, is redundant if the function is independent of the
value of that variable, i.c., flx,=0 = f],,=1. A function without re-
dundant variables is said to be intrinsic. A binary decision tree is a
mode! of the sequential evaluation of a Boolean function, wherein the
value of a variable is determined and the next action (to choose an-
other variable to evaluate or to emit the value of the function) is
chosen accordingly. Decision trees have found numerous applications
in pattern recognition, taxonomy, logic design, decision table pro-
gramming, fault detection, and analysis of algorithms (see [4] for
further definitions and references).

From the definition, we see that the height of a decision tree cor-
responds to the maximum number of variables that had to be evalu-
ated in order 1o determine the value of the function. The argument
complexity of a function is then defined as the minimum height over
all decision tree representations of that function. Thus, the argument
complexity of a function is the minimum number of variables that
must, in the worst case, be examined before the value of the function
can be determined. A function is said to be exhaustive if its argument
complexity is maximal (equal to the total number of variables). Rivest
and Vuillemin [5) have used an elegant counting method to show that
almost all Boolean functions are exhaustive. In the following we prove
that all intrinsic! symmetric and linearly separabie Boolean functions
are exhaustive, using the specific properties of those classes.

III. THE MAIN RESULTS

A Boolean function of n variables, f(x,, - -, X,), is said to be
symmetric if and only if (iff). for each permutation, o, over n let-
ters,

ﬂx;(l)- cory Xem) = fX1,0 00, Xn).

Equivalently, a function is symmetric iff there exists a set of k
numbers (k < n),{a),* -, a;}, where 0 < a; <+ - - <a; < n,suchthat
the function is equal to 1 exactly when a; of its variables are equal to
Y, foranyi, 1 <i < k [3]. Such a function has a single decision tree
structure; in particular, whenever n — g; variables have been found
equal to 0, the remaining a; variables must all be tested, since the
function will be equal to 1 if all are equal to 1. This proves the fol-

lowing result.
Theorem 1: All (intrinsic) symmetric Boolean functions are ex-
haustive. : o

Now let P be the defining property of a class of functions such that,
if f possesses P, then both f] ;=0 and /] .= possess P, for any choice
of x;; in other words, P is preserved by Shannon’s decomposition. We
then have the following characterization of exhaustiveness.

Proposition: Al intrinsic functions in the class defined by P are
exhaustive iff, in any Shannon’s decomposition, at least one of their
two subfunctions is intrinsic.

Proof: The only if part follows immediately from the definition
of exhaustive: if £ is a function of n variables and neither of its re-

strictions with respect to some variable x is intrinsic, then each of the

restrictions has a decision tree of height no greater than n — 2, so that
J has a decision tree of height 7 — 1 rooted in x and hence, is not ex-
haustive. For the if part, we use induction on the number of variables
of the functions. All intrinsic functions of one variable are trivially
exhaustive. Assume then that all intrinsic functions of n — | variables
or less that answer the theorem's hypotheses are exhaustive. Consider
a function f of n variables that answers the theorem’s hypotheses. Any

' In the asymptotic sense again, almost all Boolean functions are in-
trinsic.
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decision tree for f starts by testing one of the n variables. By as-
sumption, for any variable x tested at the root, one of the restrictions
JSlx=0and f},., is intrinsic. By inductive hypothesis, that restriction
is also exhaustive, since it is a function of n ~ | variables that answers
the theorem’s hypotheses. Thus all decision trees for that restriction
have height n — 1; but then the decision tree for f rooted in x has
height a. Since this holds for any choice of x, f is exhaustive. O

We first consider the class of unate functions—those functions
representable by a Boolean formula where no variable appears in both
complemented and uncomplemented form. Since decision trees are
invariant under complementation of variables, it can be assumed
without loss of generality that all variables are uncomplemented; this
defines the class of positive unate functions, which are monotone
increasing [3]. Both properties are easily seen to be preserved by
Shannon’s decomposition.

Let f(x),- - -, X») be an intrinsic positive unate function; then fis
exhaustive iff, for each x;, either f] =0 0f f] =1 is intrinsic, that is,
there cannot be found x;, xi (J, k # i) such that f],=0 does not de-
pend on x; and f] =1 does not depend on x;. Without loss of gener-
ality,leti=1,j=2,and k = 3, and let x stand for (x4, ** , xy). Then
Jis not exhaustive iff

ﬂou 0, X3 !) =f(0. lr X3 E) andf(lo X2 ov E) =f(] » X2, ]' 5)-
Since f is monotone increasing, it must be the casc that

f(l'xh lv!) ?-ﬂovo'xl-ﬁ)- :

so that, by topological sorting, the following relations are obtained
SO LLX)=£(1,1,0,x) =
f1,0,1,%) =/(1,0,0,) =
J01,1,5) = f(0,0,1,5) 2
f10,1,0,x) = /(0,0,0, x).

Let the four pairs of points above be denoted a, b, ¢, and 4 in that
order. For any choice of x, these four pairs can be mapped to the same
value or to two distinct values (0 and 1), with the following parti-
tions.

i) (abed) mapped to the same value; then x,, x2, and x; are re-
dundant for that choice of x.

ii) (abc) mapped to 1 and (d) to 0; then x; is redundant for that
choice of x.

iii) (ab) mapped to 1 and (cd) mapped to 0; then x; and x; are
redundant for that choice of x.

iv) €a) mapped to 1 and (bcd) to 0; then x; is redundant for that

chaice of x. :
" The monotone property excludes any other choice. This shows that
all unate functions of no more than three variables are exhaustive,
since then there is no choice for x and one of the four partitions above
must exist, contradicting the assumption of intrinsicainess. At the
same time, it shows how to construct a nonexhaustive unate function
of four variables; specifically, it is sufficient to find x” > x” such that
S(x), X3, X3, x') is partitioned according to ii) and Six1, x2, %3, x7)
according to iv), since then x; is redundant in one case and x3 in the
other, but both are necessary overall. One such function is given by
the formula

SUx1, X2, X3, X¢) = x1x2 + X1X4 + X3Xa.

f1 is easily verified that this function has decision tree representations
of height 3.

Thus, not all unate functions are exhaustive; however, a subclass
of these functions does possess the property.

A Boolean function, f(xy, ***, X,), is linearly separable (is a

threshold function) iff there exists a set of weights, jwy, - -+, w,}. and
a threshold, T, such that the function cvaluates 1o 1 exactly when

”
Z WX 2T
i=)

Again, it is easily seen that linear separability is preserved under
Shannon decomposition. Since unate functions can be taken to be
positive, weights and threshold are assumed positive without loss of
generality. Let w stand for (wy, - -+, w,) and x’ for the transpose of
X; substituting weights into the four pairs of function points yields

(@) (Wi +wrtw-xtiw+wr+wyt+w-x),
M) (wi+w-x'iw+wy+w-x'),

€) w3+ w-xtiwa+wytw-x),

d) (w-x"iwatw-x'),

where any weight sum in (a) is no smaller than any weight sum in (b),
and so on. As seen above, a function will not be exhaustive iff x* >
x” can be found such that f(x,, x3, x3, x’) is partitioned as (abc)(d)
and f(x;, X3, X3, x") as (a)(bed). Thus, the smallest sums of weights
in any of (a), (b), and (c) must be larger than the largest sums of
weights in (d) when x’ is chosen (since the first are above the threshold
while the second are below); similarly, the smallest sums of weights
in (a) must be lacger than the largest sums of weights in any of (b),
(c), or (d) when x” is chosen. Using only the extremal sums—those
closest to the threshold value, this implies, for the first partition,
(abc)(d),

witwitw-x"">w +witw-x,
and for the second, (a)(bcd),
witw x"'>wy+wex"l

The first inequality yields wy > wj while the second implies wz < w,

- a contradiction. Hence, x’ and x” cannot be found, and we have the

following result.
Theorem 2: All (intrinsic) linearly separable Boolcan functions
are exhaustive. . a]

V. CONCLUSION

Since the argument complexity of a function determines the
worst-case performance of a sequential evaluation algorithm, our
results show that no optimization is possible for symmetric and
threshold Boolean functions. In particular, the total delay of a mul-
tiplexer (or sequential lookup) implementation of such functions {2]
is fixed by the number of variables only. Similar remarks hold for
sequential evaluations of linear decision functions in pattern recog-
nition [6], longest paths through fault-trees (which usually describe
unate—and often linearly separable—functions) [1], and software
implementations of decision tables [4].
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b Boolean difference techniques for time-sequence and common-cause analysis
of fault-trees.!

e . B. M. E. Moret and M. G. Thomason.

ABSTRACT

Fault trees are a major model for the analysis of system reliability. In
particular, Boolean difference methods applied to fault trees provide a
{ widely used measure of subsystem criticality. This paper considers the gen-
eralization of the fault-tree model to time-varying systems and how time-
dependent Boolean differences can be used for the analysis of such systems.
In particular, switable partial Boolean differences are shown to provide
maximal and minimal solution sets for sensitization conditions. A method
of common-cause failure analysis based on partial time-dependent Boolean
differences is developed, which allows the study of failures due to repeated
occurrences, at different times, of the same phenomenon. Finally, the
application of those methods to systems with repair is studied; it is shown
C how, under certain assumptions of independence, steady-state distributions
can be used for the anaiysis of system faults.
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1. Introduction

Q Fault tree analysis is a method of major importance in reliability and safety stu-
* dies [2,7,10,14]. A fault tree is a representation (using logic operations) of a Boolean
function, the structure function of the system, which describes the set of elementary
s  events (subsystem failures) necessary to make the system fail. When the structure func-
) ~ tion is monotone non-decreasing, that is, when a ‘system is such that a failure of an
additional subsystem cannot improve the system’'s status, the structure function is

called s-coherent [2]. In this article, we restrict ourselves to such functions.

Of particular importance in system reliability studies is the determination of a
component’s criticality, that is, of a component’s influence on the behavior of the sys-
tem. Among several criticality measures [8], the most commonly used is Birnbaum’s
importance measure, which is simply the probability that the system is in a state in
which the functioning of the component completely determines that of the system.
(That is, the system fails if the component fails, works if the component works.) This
measure can be obtained by using the Boolean difference operator [12], a powerful
analytical tool for combinational logic expressions, in particular when a large number of
variables is involved. Recall that the Boolean difference of a Boolean function, f, with

«.  respect to one of its variables, z, is the function

% =/J l:-oef | 2eals

® where @ stands for exclusive-or and [ | ;g denotes the restriction of f to that part of
its domain where z takes the value 0.

There is interest in fault tree analysis also in systems in which the configuration of
components required to cause failure changes at a finite number of discrete points dur-
ing the interval in which the system is in operation. The term of phased mission [6] has
been used to describe such time-varying systems. In effect, variations with time force
one to consider sequential rather than combinational logic functions as the structure
functions for the system’s description. In such systems, the importance of a component
can only be measured in each separate phase by conventional methods, since the meas-
ure is itself time-dependent. However, it is important to evaluate the effects of indivi- -‘231‘::2'-‘-‘
dual components over the system’s operation time, as well to attempt to identify under- :
lying causes (known as common causes (5,15]) for time-dependent failures.
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In the following, we show how the concept of time-dependent Boolean differences
[9] can be used to develop methods for the analysis of sequential (rather than combina-
tional) structure functions. Methods for the determination of sensitization conditions,
path dependences, and measures of importance are illustrated. We show that partial
Boolean differences, taken with respect to suitable subfunctions, allow the determination
of maximum and minimum sets of conditions for sensitization and criticality measure-
ments. We then develop a new method for common cause analysis using partial Boolean
differences and illustrate it on a phased mission example. We conclude by showing how
the above methods can be applied to systems with repair, using steady-state distribu-
tions under mild assumptions of independence.

2. Time-dependent Boolean differences, sequential functions, and phased missions

Time-dependent Boolean differences were introduced in [9] as a tool for the
analysis of sequential logic functions. A time superscript is used on switching expressions
(single variables or more complex expressions) to denote their value during a specific
time interval relative to some reference starting point. In effect, the superscripts create
distinct variables for each time reference.

To illustrate these concepts briefly in the original context of sequential digital net-
works, we consider the circuit of Figure 1, composed of an AND gate, an OR gate, and
two D-type (delay) flip-flops. The value of the primary output, Z, at time ¢, Z*, is given
by the sequential Boolean function: -

Zt =X} + Xi2-X42

To determine the conditions which make Z* dependenc upon X} (that is, such that X%
is critical), we compute the Boolean difference of Z* with respect to X3 :

¢ - <
dZt — X:-z + Xé—z.
X}
The solutions of dZ*/dX{ = 1 give the necessary and sufficient conditions, both in logi-
cal value and timing, for X to be critical for Z*, namely X,=0 or X,=0 at time ¢-2.

For dependence of Z* on X%-2, we compute

——"'dZ‘ = ?‘ X -‘1—2,
i :

thus establishing the conditions X;=0 at t and X,=1 at t-2. Note that dZ*/dX] =0 for




-4-

1%t and r5£¢-2, reflecting the fact that X, can only influence Z* at times ¢-2 and ¢.

° Specific path dependencies can be isolated by partial Boolean differences. For
« example, if the dependence of Z on X, via the path X, - A =B+ C—=7 is
desired, we compute the chain of derivatives:

d dA™ dB™ dC™ dZ"

o X[ dA™ 4B 4O

wherein the linking of the time sequence reqnuirements is reflected in the time super-
scripts. Computing these derivatives at actual time intervals yields:
® dA? dBH-l
dX; dAt

=1

= 2

" c dBt+! - dCt+2

dcttl 1 dZt+2 - Xt+2.

Thus the chain yields:
dzH-z 2
. = X§-1-1- X}
o dXi*? b
' *  in accordance with our earlier computation of dZ*/dX}2.
, As noted above, the concept of a system’s requirements changing at a finite
number of points over an interval of interest essentially converts its structure function
L into a sequential logic function, so that the appropriate analytical method becomes the NSE
time-dependent Boolean difference. In each time interval, the structure function is s- i’.-;f._‘.
: coherent. We illustrate these concepts by a, plying them to a simplified example of >
:(‘ phased mission, due to Esary and Ziehms [6}. e

The example considers the interaction of a fire department, which operates three

vehicles, a large fire engine (M), a tanker (T), and a light truck (L), with a chemical

plant, the safety equipment of which consists of a sprinkler system (S), a hydrant (H),

- and a special chemical fire extinguisher system (F). A fire at the plant can be decom-
posed in three phases. In the initial stage, the large engine or the light truck combined

with the sprinkler system will allow time for evacuation. In the second stage, the special

chemical extinguisher system is needed to contain the fire, together with either the large

€ " engine or the light truck; the needed water can be supplied by the hydrant or, if neces-
sary, by the tanker through the large engine’s pumps. In the last phase, the fire is
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brought under control by the special system or by the large engine; again, the needed
water can come from .ke hydrant or the tanker.

Thus we have a six component, tliree phase system, described by the block
diagram of Figure 2. The whole system works iff each succeeding phase works in turn.
Thus the system’s success function is the product of the three phases’ success functions.
The three phases are described by the functions

P,=S'L' + M*,
Py=F'(T'M* + H*(M* + L))
Py=F'H' + M*-(T* + H')

Hence the system’s success function is, at time ¢:
Suec® = Pi2-P41-P}. |

This is a sequential logic function. (Note that it is a particularly simple type of phased
mission, since the several phases do not mix or interact.) We can analyze each phase
separately, such as by finding under which conditions the availability of the large fire
engine, M, is critical in phase 1:

dP, d(SL +M) - .
W-—l <= T—l < S+I =1 S or L fails.

However, we can use time differences to find under which conditions the availability of
the same component in phase 1 is critical to the success of the mission:

dSucct

dMt-?
(32 + L'"z)-F"‘-( THIMY 4+ HEV (M 4 L"‘)) AFtH + M(T + H‘)) =1,

=1 <«

which says, of course, that those conditions are that either S or L fails in phase 1 while
phases 2 and 3 are successful.

Yet of more interest is the criticality of the same component throughout the mis-
sion, under the assumption that a failure at time 7 implies that the component stays
faulty for ¢ > (no repair).

d®Succ’
dM'-2dM*-dM!

This triple Boolean difference gives the conditions under which the functioning of

=1e S FINFH + T+ T)=1
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component M is critical in every phase of the mission; that is, under these conditions,
each phase of the system reduces to component M. Other conditions of interest include
those under which the status of a component in some phase is critical, or those under
which specific combinations of components become critical; the next section develops a
general approach to the derivation of such conditions with Boolean differences.

3. Some properties of Boolean differences

When analyzing a system, it is often desired to determine its sensitivity to various
modes of failure of its components. While standard (multiple) Boolean differences allow
the determination of a system’s sensitivity to a particular sequence of component
failures, they cannot provide the answer to such questions as: “If one of two components
fails, under which conditions will the system certainly fail? possibly fail?"’

In order to answer such questions, we turn to Boolean differences with respect to
subfunctions, a generalization of the couventional Boolean differences with respect to
variables. The Boolean difference of the function, f(X,, ..., X,) with respect to the
subfunction g(}f;‘, .+ - »X,), where k¥<n and 1<i;<n, is defined as

%=Ilg—l®flg—07

which definition exactly parallels that of standard Boolean differences (indeed, a single
variable is a—very simple--subfunction). In the definition, we have

/lg-1=Uf|(x,l,,,,'x,.),

where the union (inclusive-or) is taken over all k-tuples which are minterms of g (i.e.,

which make g take the value of 1). For instance, with f(A,B,C), g(A,B)=A+B, and
h(A,B)=A"B, we have

% = f1A+B=1D /| 44+B=0

= (f)AmBamit | Am0 8=t S| Aw1,Bm0) B S| AmBety
%‘fh‘ = [14-B=1D [| 4-Bm=0

= ] AmB=1® (f] AmBmot | Am0 Bt [| At Beed) -

Because of the symmetric definition of Boolean differences and since X®Y = X®Y, we
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In particular, let S be the success function of a system, F=>5 its failure function, and
Sy, F, the success and failure functions of a subsystem; we then have

It follows that whatever results are developed for success functions rehxain unchanged
for failure functions; thus, without loss of generality, we shall from now on use only suc-
cess functions.

Given a system, S, and two components, X and Y, we wish to know how the
failure of one or both of the components will affect the system’s behavior. There are
three failure modes to consider:

i. both X and Y originally work and they fail simultanecusly;
ii. at least one of X and Y originally works and both eventually fail;
ili. both X and Y originally work and at least one of them fails.

The first mode corresponds to a change from (X,Y)=(1,1) to (X,Y)=(0,0); the second
corresponds {0 a change in the value of the function g=X+Y; and the third
corresponds to a change in the value of the function A=X"-Y. This leads us to consider
the functions:

i. S | x_y_oe S | XomYm=l)
&
dg’
_di
dh’

iii.

The following result defines the relationship (illustrated in Figure 3) between these and
other Boolean differences.

Theorem 1: Let S be the success function of a system, X, Y the success functions of
two of its componeats. Then




: (5 lafi
— o { e——) C =
{ (X Y)} { d(xer)} S\ar) S\Tx7) {S | X v=o® S "‘-”-'}’
}. where {/} denotes the set of minterms of f. (J
[ ]
| .
s Notice that the conditions expressed by { FIhe Y)} are such that the failure of
L
either X or Y will precipitate that of S, while those expressed by {m} are such
that the failure of both X and Y may be necessary to cause that of S. This is formal-
ized in the following result.
¢
Corollary 1: { X Y)} and {d_(X_Y')-} are the minimum, respectively maximum,
solution sets for the sensitization of S to the subsystems Xand Y. 0 e
The inclusions stated in the theorem are in general proper; however, one or both EeRs
may degenerate’into an equality. In this case, we have the following results. :
@ . Corollary 2:
. ds d%s
A 53 M7 g {S”"‘Y“} - {S'X"'“} n {S““""'"}
: o that is, if the system works equally with only one subsystem or the other function-
ing, it will work without either subsystem.
b iy = [Stemrn) = [s1rared
(‘ . dXdY - d(X+Y) | Xuml, Ym0 = | X==0,Y =1
that is, the system'’s success function is symmetric in X and Y.
: s __ d3S _ ds
W IX Y T WY dxX+y) o

{Slx-r-o} = {Slx-l'.}'-o} = {Sux_o,y-.}

that is, the system only depends on whether or not X and Y both work (only the
c ° value of the function X Y peed be known, rather than the individual status of X L—.-.
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As an example, consider again the phased mission example presented above. If we
need to find under which circumstances an initial failure of either the light truck or the
tanker will precipitate the failure of the mission, we need to consider the partial Boolean

difference

_ d3Suce!
(dL t-241,t-141¢ )_(th—szt-lth) !

whereas, if we are concerned with the influence of the simultaneous failure of both sub-

systems in the last phase, then we must consider the partial Boolean difference

dSuce®
d(L*+T)

4. Common cause failul.'e analysis

A common cause may be defined as an event which precipitates the failure of one
or more components of a system, yet is not explicitly described in the system [5,14,15].
For instance, in a fault-tree describing how an integrated circuit could fail, primary
events may include cracked die, loose bondings, input and output short-circuits, all
events which could be have been caused by excessive mechanical or thermal stresses.
Thus vibrations and temperature, although not explicitly mentioned in the fault tree,
could be a major factor in that circuit’s reliability analysis.

Several approaches have been proposed for common-cause analysis (see [14] for a
brief survey), using probabilistic or logic methods, and trying to identify common causes
or to assess their consequences. We outline below a method based cn partial Boolean
differences, which is more flexible than most methods proposed to date and lends itself
to both qualitative and quantitative analysis.

A common cause may have more complex direct consequences than the simple
failure of a number of components; in particular, the failure of a component may pro-
tect another from the common event's effects. Thus, common cause analysis cannot
proceed in a general manner by substituting specific component failures for the common
event. Rather, the common cause must be represented as a (not necessarily s-coherent)
Boolean function, call it C, and the effects of {C} must be investigated. This can be
easily done with partial Boolean differences. Specifically, the common cause event, C,
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will precipitate the failure of the system, S, exactly when
ds

. —_—= 1.

dac

| Examining the cut sets for dS/dC allows a qualitative analysis of the common
event's effects, while the probability of its being fatal to the system is directly obtained
by computing the probability of the set {dS/dC}. Furthermore, the use of time-
dependent Boolean differences allows us to consider the time-sequence effects of common
causes.

Thus a complete common cause analysis would proceed by first determining com-
) mon causes of interest and expressing their effects on the system’s components as a
(time-dependent) Boolean function, then computing the Boolean differences, and finally
extracting minterms, cut sets, etc., as needed for the analysis. It is noted that all of the
Boolean operations involved in computing Boolean differences are elementary and can be
# easily carried out by an automatic system (such as the SETS program [13]).

Returning to our phased-mission example, consider the influence of the common
cause event that results in cutting the water supply at the site. As a result, both the
‘ bydrant and the sprinkler system will fail, so that the common event can be written as

¢ =*HS. .

If that event occurs during the second phase of the mission, then the continuing success
r of the mission will depend on the event if the following Boolean difference evaluates
to 1.

2 t — - - — =
———d‘é f’:;‘o == P{2 L (M T 4 LY T+ Y (FH(T + M) + M TY).

5. Simple steady-state systems with l"epair

Allowing for the possibility of repair of faulty subsystems results in a much more
complex system. A steady-state condition can be established within each phase, how-
ever, and analyzed with standard modelling techniques, such as queueing theory (see,

e.g. [11]).

A common assumption in such analyses is that of time-independence; both the
« failure and the repair processes are treated as Poisson processes, so that the behavior of
the system in a phase can be derived from the knowledge of just the failure and repair




..............................

rates. In a phased mission, the time analysis is complicated by the presence of phase
transitions, which may result in a phase being initiated with previous failures still
present or already repaired, depending on the interaction of the phase transitions and
the failure and repair processes. However, the assumption of time-independence allows
us to complete the analysis on a phase-by-phase basis, which also allows for the possibil-
ity of phase-dependent failure and repair rates. Moreover, and more importantly, the
Boolean difference methods developed above are still applicable. (Since the success func-
tions of the various subsystems are unchanged, the difference is just in the probability
computations.) Finally, queueing methods permit the analysis of phased missions where
the change of phase is itself a random process (e.g., because it is triggered by external
events). In fact, if the phase transitions are themselves time-independent processes, the
analysis can be done by superposing two finite-state models, with resulting stats
describing the functioning of all subsystems as well the present phase.

Since the number of states in the final model grows exponentially as a function of
the number of system components, we present a very simple example. Our system has
three phases and two distinct components, as shown in Figure 4. We let A 4,\p be the
failure rates of components A and B, respectively, and p,.up their repair rates; the
phase dependence of the the rates is indicated by a superscript, according to our time
notation; finally, the rate of a transition from phase i to phase j is indicated by §;;.
The resulting model has 22-3 = 12 states, as shown in Figure 5, where each state is
labelled by three digits, denoting, in that order, the functioning of component A (1 for
working, 0 for failing), that of component B, and the phase number. (Note that transi-
tions represent only a single change in the system, since simultaneous changes have zero
probability.)

The steady-state equations (which we can write a a homogeneous linear system by
using the Markov transition rate matrix) describe a balanced flow in and out of each
state; together with the binding equation stating that the system must be in one of the
12 states, they allow us to solve for the probability of occupation of any state. Since
each state is also a unique point in the space of the time-dependent structure functions,
we can find the probability of any set of minterms by summing the probabilities of
occupation of the corresponding states (again, all of this is easily expressed in matrix
form).
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We have investigated the use of Boolean difference methods for time-sequence and

L common cause analysis of coherent systems, as represented by fault-trees. In particular,

we have shown how specific partial, time-dependent, Boolean differences can be used for

the derivation of minimum and maximum sensitization conditions and for the analysis

of complex common causes. We have also shown that such methods generalize without

® changes to systems with repairs, as long as events are assumed to be time-independent.

We conclude that Boolean difference methods, which have been and still are widely used

for fault detection, have considerable potential in reliability and sensitivity analysis
applications.

8. Conclusion
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Appendix

’ Proof of Theorem 1: By definition, we bave

ds
d(XY) = 5| X Ye1® (S | X1, Y+ S| Xm0, Y1+ 5| XemYemt) -

Since S is s-coherent and (0,0) < (0,1), S| xmym=o i8 absorbed in S| y.o y= (since,

]
whenever the first term has value 1, the second must have value 1 to maintain s-
coherence); thus we get
dS
> d(XY) = 5| X Yee1® (S | Xm0, vt + S| X1, Y] -
Similarly,
e = (S 1 xmtatt S| xmmt) B (S xmt, ¥t S| Xemt,vm0)
d{X®Y) =Y=0 Xo=Yul | Xwe0,Y w1 Xwml,Y=0) 1
c but S| xuy=o gets absorbed in S| v y.mi, S0 that we get
s _ ds
dX-Y) dXeY)’
® whence our first equality. Again, by definition,

. ds
dX+Y) 81 =y m0® (8| xmyart S| X, vt 5| Xem1, Yemt)
4 but both S|y, yeet 804 S| yuut, Y=o et absorbed in S|y yes SO that we get

@ dsS
rreviie S| XmYm0D S | X Yot

whence our second equality.
c Finally, we have ‘ ;’ —

s d
a7 = 7 (51 x=0® S 1 x1)

= (51 x=0® S| x=1) | y_ @ (S1x=0D S 1 x=1) | 4,

= S| X Ye0D S | X, Y=1D S | Xem1, YD S | Xem Vi

Now we establish the inequalities simply by remarking that ' \‘3
c o {f} € {g} C {b} => {g®h} C {fDh) and {g®f} C (LD1}. éi-:;-:-:;
Thus, since '
‘ oo
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{S | Xm0, Yeu1©D S | Xm1, y=o® S | x-r—o}

¢ c {Slx-o,r-r*' S | Xwml, Ym0t Slx-r—o} c {Slx_y.l}

p (the latter because of s-coherence), we get our first inequality by composition with
) S | XwYwi- Similarly, since

{S ! x-r—o} c {5 | X0, YemID S | Xem1, YD S | X—Y—l}

» c {Slx-o.r-r" S| Xwi,ymot S |x_y..|}
(the former because of s-coherence), we get our second inequality by composition ‘with
S| xmy=o- O :
C
[
A 3
U4
[
c
C
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Figure 1. A simple sequential circuit.
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Figure 4. A very simple phased system.
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ABSTRACT o 1

Minimizing the size or cost of a set of tests without losing any discrimina- s 3
tion power is a common problem in fault testing and diagnosis, pattern o i
recognition, and biological identification. This problem, known as the Y
minimum test set problem, is known to be NP-hard, so that determining s 1
an optimal solution is not always computationally feasible. Accordingly, ' o :
researchers have proposed a pumber of heuristics for building approxi- oA
mate solutions, without, however, providing an- analysis of their perfor- s

mance. In this paper, we take an in-depth look at the main heuristics
and at the optimal solution methods, both from a theoretical and an
experimental standpoint. We conjecture that the heuristics will yield
solutions that stay within of factor of two of the optimal cost and present
generic examples where this factor is reached by any greedy heuristic. We
then present the results of extensive experimentation with randomly gen-
erated problems. While the exponential explosion suggested by the
problem’s NP-hardness is apparent, our results suggest that real world
testing problems of large sizes can be solved quickly at the expense of
large storage requirements.

-

+ The work of the first author was supported by the Office of Naval Research, Arlington, Virginia, under
grant No. 6014-78-C-0311. ]




1. Introduction

Identification problems arise in almost all fields of scientific research. We are concerned

here with a special type of deterministic identification, where an unknown (system state,

animal species, location of a fault) must be classified in one of a given set of categories,
based on the outcome of a set of tests. Each category is characterized by a vector of L

test outcomes, and an unknown object is classified in that category if its vector of test

outcomes matches the category’s characteristic vector. The collection of all categories e
together with their characteristic vectors is known as a diagnostic table. A diagnostic ‘ -
table with m categories and n tests can be represented as an m Xn matrix, where the B

(¢,7) entry is the result of test T; applied to the unknown object O;. Such formulation s
is common in testing and fault analysis [2,4,11], biology [15,22,23] and pattern recogni- ) L:

tion [5,13].

Given a diagnostic table, it is often the case that some tests are redundant. In
such a case, it is of interest to find the smallest suitable subset in order to minimize the

cost of identification. The minimum test set (also known as the test of minimum

length) is the smallest subset of tests which discriminates between all categories dis-
tinguished by the full set of tests. Knowledge of the minimal test set can reduce costs
in il;plications where a rapid identification is needed, that is, in situations where all the
tests will be applied in parallel. Cost reduction will also occur in applications where the
capital costs (procurement of the test equipment) far exceed the running costs, regard-

less of whether the actual testing is done in a parallel or sequential manner. (This is the

minimization of the acquisition cost in decision trees [12].) Applications of the second

type are to be found in most fields of human endeavor, including some that do not

explicitly include testing: servicing equipment under poor access conditions (military

equipment in the field, oil rigs at sea), where the cost of delivering service personnel and g

apparatus must be minimized; remote sensing missions, where the cost of the apparatus L\_
2
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must be minimized subject to performing all the required tasks; and fault diagnosis and
design for testability, where, for instance, the number of checkpoints added to a circuit

must be minimized subject to retaining a prescribed level of testability.

Unfortunately, the minimization problem is known to be NP-hard [6]. Accord-
ingly, researchers have developed a number of heuristics for building suboptimal test
collections by using variants of a greedy algorithm where, at each step, the locally
optimal test is added to the partial solution. However, no analysis of those methods is
offered in the literature.

In this paper, we take an in-depth look at existing heuristics and how they can be
applied to develop optimal solutions. We conjecture that existing selection heuristics
will not exceed the optimal by more than a factor of 2 and provide generic examples
where this factor is asymptotically reached for all existing heuristics. We then present
and discuss the results of extensive experiments with both artificial (randomly gen-
erated) and real-world problems. While the exponential explosion suggested by the
problem's NP-hardness is quite apparent in the artificial examples, our results suggest

that real-world problems of large sizes can be solved in reasonable time.

2. An Analysis of Proposed Heuristics

Almost all proposed heuristics belong to the class of greedy algorithms, in that they
perform local, step-by-step optimization, using a suitable selection criterion. Very few
analytical results are available about the minimum test set problem in general and the
behavior of the proposed heuristics in particular. A number of Russian researchers
[8,9,21] have studied the expected size of the minimum test set for randomly constructed
tables; the analyses of the main two heuristics discussed in [12] in the context of

identification trees do not extend to the minimum test set problem. In the following, we
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briefly define the four main heuristics proposed in the literature and offer a partial

analysis of their worst-case behavior.

3.1 Definitions

When a pair of categories is distinguished by only one test (that is, the categories’
characteristic vectors differ in exactly one component), that test is called essential and
l.nust be included in any complete set of tests. Thus, in a step-by-step method, pre-
including all essential tests is an optimal policy; all proposed methods [2,3,18,20] make
use of this policy.

When all essential tests have been included, one can either attempt to extend the
notion of essentiality or resort to a measure of a test's local optimality. The first
approach has tggen used b.y researchers in microbiology [186,18,20]: since a test is essential
when it is the only test to separate a pair of categories, a test is ‘“nearly essential” if it
is one of only two (or a few) tests to separate a pair of categories. This extension res-
tricts the choice of the next test to one of those that separate that pair of categories
which is separated by the least number of of tests — the least-separated pair. An algo-
rithm using this criterion will thus focus on cafegory pairs; ties between tests and/or
between equally poorly separated pairs are broken by the use of a “second-level” heuris-
tic — one of the measures of local optimality described below. We shall call this the

least-separated pair criterion.

The second approach attempts to measure how well a new test will complement
those already chosen; in such an approach, all as yet unincluded tests are considered for
inclusion. An obvious choice is to count how many as yet unseparated pairs the new
test will distinguish and choose a test which maximizes this count: we shall call this the
separation criterion. This heuristic has been extensively used in fault analysis [3,4]

and microbiology [16,20]. The contribution of a test can also be measured in terms of
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entropy (or, equivalently, of information), in which case the initial state — a single

b homogeneous group — corresponds to an entropy of 0 and the final state — m distinct . e
.+ groups of one category each — to an entropy of logym; it can also be measured in terms :

of permutations, where the initial state corresponds to a value of 1 — for there is only

one way to assign a label to the single initial set — and the final state corresponds to a
value of m!, the number of ways in which m distinet items can be labelled. The infor- . RS

mation theory approach is found early in the literature and used extensively for both

o .
PRI S

P the minimum test set and the related minimum identification tree problems [4,12,16]. o .
Formally, the entropy of collection C of k clusters, of sizes s, ..., s, comprising m
elements in all, is defined as ' o
H(C) = logam - Y] s; logys;. @ .
fm] TR
Api)lying a test to a collection of clusters yields a new collection, with larger (or equal) w
. a  entropy; the difference is the amount of information contributed by that test. The test ®
which brings about the largest increase will be selected. We shall call this approach the

¢  information criterion. The combinatorial approach, described in [17] and used in [14],
considers how many possible distinct partitions of the size used could exist; the loga-
rithm of this quantity is used as a measure, called repartment [17]. However, the

- .

repartment of a partition of m objects is equal to m times the entropy of the partition

(within an additive factor of logym), so that the two approaches are essentially

w

equivalent.

Thus, we have four main heuristics: least separated pairs with separation used to

P choose among the candidate tests (at the “‘second level”); least separated pairs with
information used at the second level; separation alone; and information alone. The first
two restrict the choice of tests before applying a local measure of optimality, while the

b

last two apply such a measure to all remaining tests.
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2.2 Analysis
¢ Examples are easily constructed that show that no heuristic is uniformly better than the
**  other three. 'l;he four heuristics are rather similar: the effect of restricting the choice to
, . those tests separating the least separated pair does affect the order in which the tests
® are selected — which is of no consequence with regard to the final subset selected; it
also affects the composition of the final subset, since a different order or selection may
modify the local measures of optimality of the remaining tests. Typically, we found
. that these indirect effects are minor. Mor~over, the measures of local optimality are ,all
convex functions, the minima and maxima of which all occur at the same points.
c It is easily shown that, in the worst-case, none of these heuristics will yield a

solution with a cost that is at most a constant away from the the optimal. Indeed, stay-
ing'within a fizéd constant around the optimal is itself an NP-hard problem (our proof
© , Ussa technique that has become standard in the field: see [6, pp. 138-139]). We show
that this problem is NP-hard by showing tha.t,_if a heuristic existed that produced a

*»  solution that had at most & more tests than the optimal, then we could use it to con-

° struct the optimal solution (and thus solve an NP-hard problem). The idea is to scale
our problem up, solve it with the heuristic, and then scale it down, so that the error Zzi:,'-:'.."--:.;
marig.in will shrink to zero by rounding. Specifically, given a problem, we “multiply” it
e by k+1 by making k+1 copies of each object (regard each copy as a coordinate in a L:_:
k+1-tuple) and thus k+1 copies of each test (one»copy for each coordinate). Notice

that the optimal solution for this problem has exactly k+1 times the number of tests of
the optimal solution for the original problem. The heuristic solution will fall within k of i
the optimal for the larger problem; now pick as solution for the original problem the
smallest of the test sets obtained by retaining from the heuristic solution only those

tests that apply to the same coordinate. That set has no more than 1/(k+1) the

number of tests of the heuristic solution; thus it has at most k/(k+1) more tests than




the optimal solution; but all quantities must be integer, so that we have in fact obtained

the optimal solution.

Fnrtherinore, another standard technique can be used to show that staying
within an arbitrarily small ratio of the optimal is also NP-hard (i.e., no fully polynomial
time approximation scheme [6] exists for the problem): it is an immediate consequence of
the corollary on page 141 of [6] and of the fact that our problem is strongly NP-hard.
Thus the best possible algorithm is one tha.t produces solutions, the size of which stays

within a fized ratio of the optimal.

We conjecture that all four heuristics discussed above exhibit the same worst-case
behavior, yielding a test set that is, for binary tests, at most twice larger than the
optimal — which, in view of the preceding proof, is about as good as can be expected.
The main ratioiale behind our conjecture can be stated as follows. For the ratio to
grow large, the optimal solution must remain small, thereby requiring tests with good
discriminating power; however, those tests that the heuristic erroneously selects must be
even better locally. Now, the discriminating power of. a test is always measured on the
whole partition, so that a test cannot be good locally without being fairly good overall.
Therefore, the worst-case behavior should occur when the tests comprising the optimal
solution are quite good for the most part, although marginally less good at each step
than those selected by the heuristics. As to the heuristics, after selecting those locally
good tests, they must complete their solution set with locally poor tests, so that they

yield a large solution set.

Pushing this to the extreme, we present below a genecric example where any of
the proposed step-by-step heuristics will select what appear to be “‘perfect”! tests (in the

t i.e., even-splitting and such that each successive test divides exactly in two each of
the clusters determined by the previous tests.
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€
sense that they produce successive partitions where all subsets are of equal size), only to

° be forced to include tests which, although initially good, are poor at this point, each

. effecting only a few discriminations. All apparently perfect tests are in fact redundant
| in the final solution, because the heuristics had to complete their partial set with those

° . tests which alone would comprise the optimal solution. Since the example yields an
asymptotic ratio of 2, and in view of the above arguments, we conjecture that the
worst-case performance ratio of any of the proposed heuristics never exceeds 2.

e We first construct the example for heuristics based on local optimality, then show
how to modify it by dropping a few tests to make it applicable to least separated pairs
heuristics as well. The example has 2® objects and 2*+2n-1 tests (where n>3), in

€ three groups. The collection comprises all 2" simple tests, {3y, . . . , 8.}, where test s;

asks “does this object belong to category ¢1". Then there are n-1 “‘perfect” tests,

{P1) - - - » Pu-1}, Which by themselves determine a partition of 2%-1 subsets of 2 objects
o s each; they ar.e most easily constructed by filling the table with, for each object, the most
significant (n-1) bits of its index in the table. Finally, there are n *‘almost perfect”
tests, {t,, . .., t,}, each of which splits the categories 2n-141 vs. 2"!-1; we construct
® them by filling the table, for each object, with its binary Gray code modified only by

repeating the first code (all 0s) and omitting the code consisting of all 1s — this guaran-

tees the appropriate split by tilting the balance of 1s and 0s for each of those tests. Fol-
C lowing is the diagnostic table for n=4.

Now, any heuristic based on local optimality will first select all p tests, since they

produce a perfectly balanced partition at each step. Indeed, any k-step heuristic (that

L
is, one which selects tests k£ at a time, for some fixed k, rather than one at a time) will
also select the p tests, whenever k divides n—1. After that, the heuristic will select all
¢ of the ¢; tests, which are always preferable to the simple tests, and complete the test set

by picking either s, or s, to yield a solution of 2n tests. The optimal test set,




tests
objects
p ¢ s

0 | 000 0000 1000000000000000

. 1 | 000 0000 0100000000000000

2 | 001 0001 0010000000000000

3 |00l 0011 0001000000000000

. 4 | 010 0010 0000100000000000
5 | o010 0110 0000010000000000

6 | o011 0111 0000001000000000

7 | o011 0101 0000000100000000

8 | 100 0100 0000000010000000

9 | 100 1100 0000000001000000

‘ 10 | 101 1101 0000000000100000
11 | 101 1110 0000000000010000

12 | 110 1010 0000000000001000

13 | 110 1011  0000000000000100

14 | 111 1001 0000000000000010

' 15 | 111 1000 ©000000000000001

however, comprises all ¢; tests and either the s, or the s, simple test, for a total of n+1
tests. Thus the ratio is 2n /(n+1) for any heuristic that uses step-by-step optimization

with a local measure of discriminating power.

o

To make this example work for the least separated pair heuristics with a second-

) level selection criterion of the type described above, we need to modify it so that one of
the'least separated pairs always includes the next “perfect’” test, thereby ensuring that
test’s selection. In the example as built, the least separated pairs are separated by two

b tests. Therefore, for each p test, we shall remove selected s tests to give least separated
“status” to a pair separated by that p test. In doing that, we cannot remove both s,;_,
and s,;, since then the (2¢/-1,2¢) pair would be separated only by the remaining ¢ test,

b making it essential; nor can we remove either s; or s,, since removing one makes the

other essential. Hence we pick suitable pairs separated by four tests (two s, one ¢, and

one p), and remove the two s tests in order to guarantee the selection of the p test.
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Specifically, we remove the following two s tests for each p test. For p,, we
remove tests $yue,; and $pu-1,002,; for p,_;, we remove tests s,._3 and so.; finally, for
pi,» 2<i<n-1, we remove tests 8yu-1v,; a0d 850 ge-e o, It is easily verified that no
two of those removed tests are of the form 2i-1,2¢ and that the pairs chosen are
separated only by the appropriate p test. The end result is a problem on which any of
the proposed step-by-step heuristics — including those that select more than one test at

a time — will produc-e a set of 2n tests as opposed to the optimal's n+1.}

A different approach yields another example for which the separation-based
heuristics will exhibit an asymptotic ratio of 2. The idea is to transform known worst-
case examples for the related set covering problem {1,6,10] into minimum test set prob-
lems. Recall that a set covering problem is given by a family of sets, the goal being to

find the smallest number of sets in that family that cover tfxe family, i.e., such that

their union is equal to the union of all sets in the family. Let m be the number of ele-:

ments in that union. The transformati‘on creates a pair of categories for each of the m
distinct set elements; each set in the family gives rise to a test, w_hich takes values of 1
for the first of the pair of categories for each element in that set and values of 0 every-
where else. The problem is completed by adding [logam] tests to distinguish the m
pairs of categories. After selecting all these tests, the separation heuristics will have to
select those tests that correspond to the sets selected in the set covering problem by the
standard greedy method. Johnson (7] has shown that the latter selection can be arbi-
trarily far from optimal, by a factor of logsm; specifically, he provides a generic example
with m=3-2% where the optimal cover uses 3 sets and the greedy solution requires k+1.
mld apply a backwards elimination procedure on the result of the forward

selection procedure (see [5]) in order to eliminate some of the redundant tests.

However, the elimination of redundant tests is itself a minimum test set problem and

thus not amenable to optimal solution. Although a greedv-based backwards

elimination procedure would indeed improve the greedy solution in this example,
cases remain where the ratio of 2 would still be reached, as our next example shows.
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This translates in our problem to an optimal solution of [logym]+3 and a greedy solu-

tion of [logom]+k+1. Since k=log,m-log,3, our worst-case ratio is

[logam] +logam—(log,3-1)
[logym] +3

which is always smaller than 2 and reaches 2 asymptotically. (In this example, the
greedy solution has no redundant tests, so that it cannot be improved through the appli-
cation of a backwards elimination procedure.) This example can also be transformed to

make it work for the information-based heuristics.

3. Bounding Methods

Non-exhaustive search algorithms that find the optimal solution — such as branch-and-
bound or Vdepth-ﬁrst search — require both upper and lower bounds on the size of the
optimal solution. The bounds are used in pruning, i.e., in eliminating fruitless directions
of search (pruning occurs whenever the local lower bound reaches or exceeds the gfobal
upper bound); they can also be used in guiding the selection. A global upper bound is
trivially provided by the size of the best solution found so far; our conjecture of the pre-
vious section, if true, would imply that this bound is fairly tight. (Indeed, a proof of
our tonjecture would also provide a lower bound: the optimal solution must be at least

half as large as the easily computed greedy solution.)

Any measure of a test’s discriminating power that gauges distances on the way
from the initial to the final partition can also be used to derive lower bounds. At any
step, we compute the distance from the partition determined by our partial solution to
the final partition, as well as the local contribution of each available — i.e., not yet
chosen nor eliminated — test. Wt;. then sort the available tests’ contributions in
decreasing order and, assuming no interaction between tests, find by repeated summing

how many tests are needed to complete the partial solution. Since the contribution of a
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test does not increase as the partial solution is expanded, this gives us a safe lower

bound.

The separation-derived function gives us a lower bound on the number of addi-
tional tests needed to distinguish the remaining unseparated pairs, assuming that no two
tests separate the same pair — a very unlikely event. The information-derived function
finds a lower bound on the number of additional tests needed to increase the entropy to
the final partition’s value, assuming no cross-information! between tests — an unlikely
assumption, but one that can be closely approximated. We note that, whenever there is
cross-information between two tests, there will be some pairs that they both distinguish,
but that the converse is false. For instance, if m is a power of 2 and logym of the tests
perfectly complement each other, then those tests have no cross-information, yet any
twa of them distinguish m2/8 common pairs. Thus we expect the separation bound to

be much looser than the information bound.

A simple example will illustrate our point. Consider a problem with m (an even
number) categories, where all tests effect an even split, m /2 vs. m /2. The tightest pos-
sible lower bound on the size of the optimal solution is [logsm], an achievable size.

Now, each test separates (m/2)(m/2) = m?/4 pairs and brings an increase in entropy

of 1 .bit, so that the separation-derived bound is

[imie] - [2t22] - -

-y

m2/ 4 m :_:;.- E

o

while the information-derived bound is N
logzm -~ o

- = [log,m].

1 There is cross-information between two tests if the amount of information which e
they contribute together is less than the sum of the amounts which they contribute AR
individually. Y




The information-derived bound is as tight as possible; the separation-derived bound is

off by an unbounded factor.

The better the tests are, the poorer the separation-derived lower bounds become;
in fact, the case illustrated above is essentially the average case in random tables with
large numbers of tests, since well-splitting tests are far more likely than others. Thus
the separation-derived bounds will be practically useless in problems that have a large
number of tests relative to their number of categories (a “wide” diagnostic table). Even
for “square” or “tall” diagnostic tables, those bounds will be effective only if the tests

are rather poor.

In fact, the information-derived bound can also be arbitrarily smaller than the
size of the optimal solution, although the factor cannot grow as large as for the
sep;xration-deriiréd bound. Clearly, the worst possible behavior for the information-

derived bound is to indicate the need for a logarithmic number of tests (close to the

theoretical minimum) while the problem in fact requires a linear number of tests {close

to the theoretical maximum). Such a behavior can be observed in a square diagnostic

table where the 1 entries are disposed so as to make the table into a lower triangular —
matrix. Thus, for m object categories, the information-derived bound can be off by at 1;:_;'-22;
most a factor of O(m /log,m), while the separation-derived bound can be off by a factor '1
of O(m). =
R
LE_‘:-._:
4. Experimental Results and Discussion ' :%:;'_:
=

4.1 Goals and methodology Y

The goals of experimentation were three-fold: to verify our deductions about the selec-

tion criteria and bounding functions; to determine how much work was expended on

finding the optimal solution (as opposed to verifying its optimality); and to obtain an R
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estimate of the size of the largest problems that could be solved in a reasonable amount

of time by these techniques.

Faced with a problem of subset search, the algorithm designer usually has a
choice of four techniques: dynamic programming, cutting plane techniques, branch-and-
bound, and depth-first search. The minimum test set problem has no apparent formula-
tion in the framework of dynamic programming. Integer programming, through the
solution of its linear programming subproblem and the use of cutting planes, has proved
very effective with the related (also NP-hard) problem of set covering [1}. Unfor-
tunately, the linear programming formﬁlation of the minimum test set problem requires
a number of equations that grows as a quadratic function of the problem’s size (as
opposed to a linear function for the set covering problem), thereby producing an exces-
sively large system. The last two methods are more attractive for our purposes since
they both perform an explicit search of the state space as guided by selection criteria
and bounding functions. An estimate of the amount of storage needed for the inter-
mediate solutions in a straightforward implementation of branch-and-bound techniques
shows that memory requirements are too large to allow the solution of problems of use-

ful size.

) Therefore we chose the depth-first search technique (also known as single branch
enumeration). It has the advantage of requiring only the storage of a single path in the
search space (whereas branch-and-bound techniques may require an exponential
number). Also, since the first solution produced by the depth-first search algorithm is
the greedy solution, the chosen algorithm has the added advantage of allowing immedi-
ate comparisons between selection criteria. Finally, the two methods based on the
least-separated pair should work very well in most cases, as the restriction on the choice
of candidate tests should drastically diminish the size of the search space. We wrote

four PASCAL programs, each implementing one of the four selection heuristics with its
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matching bounding function. The global upper bound is provided by the size of the
best solution found so far; our conjecture implies that this bound is fairly tight. The
, « lower bounds can be derived from the local contributions of each remaining test and the
distance to the solution: we assume that the tests do not interact and find by repeated
summing of the tests’ cont;ibiltions (sorted in decreasing order) how many tests are

needed to complete the partial solution.

All four programs pre-include essential tests whenever such are to be found. It is
noted that, although only those tests that are essential with the initial partition must
appear in any solution, the backtracking process may give rise to ‘locally essential”
tests, since the process of removing a test from consideration in the subtree may make
other tests essential in that region of the state space. Asa result, an efficient implemen-
tation requires a pair-oriented data structure, keeping track of which available tests dis-
tinguisﬁ each unseparated pair, so that the search for essential tests can proceed in

®. - nearly constant time. This data structure can grow very large and its memory require-

ments turned out to be the main limiting factor in real world examples.

® All four programs were run on randomly generated problems and those two pro-
grams based on the separation measure were also run on real world examples excerpted

from the microbiology literature (in which test sets are regularly published). Nearly all
real world examples included variable outcomes (i.e., undefined test values) and a few
had multiple-valued (as opposed to binary) tests. All artificial examples had binary
tests only and the random generator was set so that the two poSsible outcomes would be
exactly balanced over the whole table. (Such problems are harder than those where one

outcome is favored, because the even balance introduces a bias in favor of well-splitting

tests. We also ran a number of expériments with various skews; all proved noticeably

easier to solve than their evenly balanced counterparts.) When the number of tests was ’Y

small for the number of objects, the randomly generated table often did not distinguish
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between all objects; in such a case, a solution is a subset of tests that effects as much

discrimination as the full set of tests. The data collected included the size of the greedy
-

solution and of the optimal solution, the initial lower bounds, the number of backtracks

needed to reach the solution, and the total number of backtracks used.
4.2 Artificial examples

In order to study the influence of the number of categories and that of the number of
tests on the behavior of the algorithms, four series of experiments were run. In two of
the series, the number of categories was kept constant while the number of tests was
varied; in one series, the process was reversed; and in t.he last series, all problems .were
square with increasing sizes. The sizes varied from 6 to 84, with varying resolution.
Twenty-five examples were generated for each size in each series and their results aver-

aged; in all, neatly 2500 examples were run.

The results are presented in gfaphical form in Figures 1-8. Each of the first four
figures d'isplays the data collected in one series of experiments in the form of four
graphs: the top two show the average total number of backtracks required (the most
accurate measure of work) as well as the average size of the solution, while the bottom
two show the percentage of work that was devoted to finding the optimal solution (as
opposed to verifying it). The two graphs on the left display the data obtained with the
least separated heuristics and those on the right are concerned with the other two
heuristics. In all graphs, data points marked with a triangle correspond to results
obtained with the information-derived bounding and selection functions; those marked
with a square correspond to results obtained with the separation-derived bounding and
selection functions; and those marked with a circle indicate the average size of the solu-

tion. Figure 5 illustrates the performance of the greedy methods (it displays the average

and largest values of the ratio of the size of the greedy solution to that of the optimal

(%% e a6 0,0,
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solution) while Figure 6 illustrates the performance of the bounding methods (it shows
the average and largest values of the ratio of the initial lower bound to the size of the
optimal solution). Finally, curves were passed through the points in order to make the
graphs more legible. (Those curves should not be taken as an accurate depiction of the

heuristics’ behavior: the data are intrinsically discrete.)

In the first series, all problems had 16 categories, while the number of tests varied
from 8 to 64 in steps of 2. Since 16 is a power of 2, it is a transition point for the size
of the best possible test set: although problems of that size could admit a solution of 4
tests, such a solution would be hard to find, since it must be composed of 4 perfect tests
with no cross-information. For such a solution to"exist, a rather large choice of tests
must be provided; therefore we expect the average size of a solution to stay above 5
until the number of tests is large, then to decrease slowly. Since a solution of 5 tests is
optimal in most cases, we expect i:ha.t a good bounding function will stop the search
algorithm shortly after the solution is found. Moreover, until a solution of 4 tests is
feasible, there will be a number of optimal solutions of size 5, so that one such solution
will be found almost immediately by all heuristics. Figure 1 shows the experimental
results, which confirm our expectations. While the information-based bounding did very
well, the separation-based one did very poorly — because many of the tests are well-
splitting. Since the information bounds were tight, the reduced branching factor associ-
ated with the least separated pair heuristics did not play a significant role, while that

role is clearly exemplified by the two programs using the separation bounds.

In the second series, all problems had 22 categories; other parameters were as in
the first series. With 22 categories, the best possible test set has size 5. Such a solution
is not as difficult to realize as in the first series, since it is well above log,22 = 4.46. On
the other hand, the bounding can be decisive only if a solution of 5 tests is reached; the

test interactions that make a B-test set optimal will not be reflected strongly enough in
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the bounds. As a result, we expect the programs to perform a nearly exhaustive search %‘.'-_'.-_. ;

B of the first few levels of the search tree when the optimal solution has 6 tests. Of -;—“-‘

course, such solutions abound, so that all heuristics will find one almost instantly, while

solutions of 5 tests will be considerably more difficult to find until the choice of tests

P ' becomes sufficiently large. As thgt choice grows, all four heuristics will find a solution
of 5 tests very early; the information-bounded programs.will then stop shortly, while the
separation-bounded ones will go on and explore nearly the full tree. The role of the
» reduced branching factor of the least separated pair heuristics will be as in the first
series, minor for the information-bounded programs and major for the other two.

Experimental results are shown in Figure 2.

In the third series, the number of tests was kept at 16, while the number of
categories was varied from 8 to 64 in steps of 2. As the number of categories increases,

L so does the size of the theoretically minimal solution; the size of the best realizable solu-

¢ tion increases even faster, since the choice of tests becomes relatively small. With a

large nuprer of objects, the tests will interact significantly, so that we expect bounds to

g be rather loose and play only a minor role. On the other hand, the probability that a

L pair is separated by only one or two tests significantly increases, so thit we expect the E
least separated pair heuristics to perform considerably better than the other two. T
Finally, the selection heuristics will do rather well because the tests, with so many
entries in each column, are well differentiated. For small to medium numbers of

categories, the situation is more complex. The selection heuristics will perform rather

poorly for a number of categories just above the number of tests, because the optimal

r solution is likely to be nearly unique. At the same time, the number of categories is not

large enough that good bounding can take place; thus the overall work should increase :

dramatically. However, the bounding and selection will improve as the number of ‘

categories and of optimal solutions increases, so that the work done will level out. As
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the number of categories further increases, it becomes more difficult again to find the
optimal solution and we expect the total amount of work to increase once more. The
v results are shown in Figure 3. Notice how closely the curves for the information-

bounded programs follow those for the separation-bounded ones, demonstrating the rela-

P tive lack of success of the bounding functions.

The fourth series had square pl;oblems, with a size increasing from 6 to 60. (Only
the best of the four heuristics was used for the larger sizes; indeed, 40x40 appeared to be
the practical limit for the separation-bounded heuristics.) Since, in a square problem,
the choice of tests is relatively restricted, we can expect a behavior similar to that exhi-
bited in the first half of Figure 3. Least separated pair heuristics will hold a slight edge

over the other two and the information-guided heuristics will vary in performance

between much better than the separation-guided — when the solutions become harder
to find and thus provide for better bounding — and almost as poor — when the solu-
v tions become easier to find and thus cause much looser bounds. Experimental results

are shown in Figure 4. They dramatically illustrate the trade-off between tighf bound-.

>

ing and ease in finding solutions: the harder a solution is to find, the easier it will be to

prune the remaining branches, yet, if the solution is too hard to find, most of the tree

will be explored just looking for it.

The data collected about the size of the greedy solutions confirmed that all four
heuristics are good selection criteria. No greedy solution ever exceeded the optimal by
more than 50%; on the average, greedy solutions were only 6% to 7% larger than
optimal. As expected from our discussion of the separation and information measures,

~ the two performed equally well (the average ratios were always within one percent of

each other, which is not a statisticzﬂly significant difference over 25 experiments); the

two methods relying on the least-separated pair heuristic showed a slight advantage,

presumably due to the narrower focus they impart on selection. Figure 5 presents the




results (the average ratios of the size of the greedy solution to the size of the optimal
solution) in the form of four graphs (one for each series of experiments); in each graph,
data points marked with a cross (X) correspond to the least-separated pair heuristics

while those marked with a plus (+) correspond to the first-level heuristics.

We chose to illustrate the behavior of the bounding methods by collecting statis-
tics on the ratio of the size of the optimal solution to the initial lower bound (as derived
by usix.lg separation or information measures). The average and woxsb-case-values of
this ratio are plotted in Figure 6 in four graphs (one for each series of experiments); in
each graph, data points marked with a triangle correspond to information-based bounds,
while those marked with a square correspond to separation-based bounds. As expected
from our discussion, the lower bounds based on information are consistently better that
those base on separation. In particular, while the separation-derived bounds worsen
with increasing number of objects, no such trend is apparent for the information-derive

bounds.

Overall, the experimental results confirmed our evaluation of the selection criteria

and the bounding functions. All four selection criteria appear equal. .Least separated

heuristics are vastly superior to the other two when efficient bounding is not possible (as

when the number of categories grows large with respect to the number of tests), due to
their small branching factor. Information-bounded heuristics are much better than the e
other two when the optimal solution is found early and efficient bounding can be done
(as when the number of tests grows large with respect to the number of categories). In

all cases, the most efficient program used the least separated pair heuristic with

information-based bounding. The largest solvable problems had sizes of around 40 by

40, although a single parameter could be increased well beyond that.
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4.3 Real world examples

In view of the results obtained with artificial examples, a certain optimism is justified as
regards real world problems. Such problems tend to have many essential tests; more-
over, they are often composed of a small number of well-splitting tests and a large
number of rather poor (possibly simple) tests. With such a structure, selection criteria
should perform well, as several picrobiology researchers have found [16,19]. Moreover,
many pairs will be ‘be separated by only a few tests, so that the least separated pair

heuristics should keep the branching factor quite low.

We used the separation criterion only, as the information criterion is not e.asily
adapted to problems with variable test outcomes. (Being based on clusters, it requires
that the size of all clusters established by the inclusion of tests be recorded. In turn,
this requires that all clusters be kept track of explicitly, since common sets and subsets
must be eliminated. All of this adds up to excessive bookkeeping and enormous storage
requirements.) The table below presents a synopsis of the results on eight examples
from the microbiology literature; in that table, LSP stands for the least separated pair
heuristic with separation bounding while SEP stands for separation as the ‘‘first-level”
heuristic. The data presented include the size of the problem, the size of the optimal
solution and that of the greedy solutions found by each heuristic, the number of essen-
tial tests, the total number of backtracks used by each heuristic in obtaining the
optimal solution, and the percentage of work used to discover (as opposed to verify) the
optimal solution. Several remarks are in order. First, many of the tests incorporated in
an optimal solution were essential, showing how important it is for an algorithm to
include essential tests whenever possible. Secondly, the optimal solution was almost
always found immediately, confirming the power of the greedy heuristics in real world
examples. Third, some of the problems run were four times larger than the largest

artificial examples attempted, yet ran almost a hundred times faster. Finally, the

-----
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Problem Size Solution Number Backtracks % Work to Sol.

Isolates Categories Tests | Opt. LSP SEP Ess.Tests LSP SEP LSP SEP
Actinomadura! 11 32 5 5 7 1 7 2 00 672
Cyanobacteria® 106 19 | 16 16 16 15 16 16 00 00
Enterobacteria’ 7 20 7 7 7 4 7- 7 00 00
Pseudomonas [14] 27 21 8 9 8 2 16 21 217 0.0
SMA12 kit3 142 12 | 12 12 12 12 12 10 00 00
Streptococcid 36 32 | 25 25 25 25 25 25 00 00
Streptococci [18) 50 122 | 36 36 36 31 43 43 00 00
Yeasts* ) 98 6 | 16 16 17 5 144 1556 00 02

1 Goodfellow, M., et al. Numerical tazonomy of Actinomadura and related Actinomycetes. J. Gen. Micro-
biol. 112 (1979). pp 95-111.

'z Rippka, R., et al. Generic assignments, strain histories and properties of pure cullures of cyanobacteria.
J. Gen. Microbiol. 111 (1979). pp. 1-61.

3 Rypka, E.W. Private communication. Lovelace Medical Center, Albuquerque, 1981.

4 Belin, J.M. Identification of yeasts and yeast-like fungi I: tazonomy and choracleristics of new species
described since 1978. Can. J. Microbiol. 27 (1981)). pp. 1235-1251.

program using the least separated pair heuristic with separation bounding never used
more than a minute of CPU time running on a VAX11/780 computer. (For comparison,
the greedy heuristic used in [14] on the Pseudomonas example took 2.8 minutes on an
IBM360/50, while our program took 1.9 seconds to guarantee an optimal solution for the
same problem — an enormous difference that we attribute mostly to our careful choice

of data structures.)

Overall our results confirmed our optimism about real-world problems and justify
an even more positive attitude: with a judicious trade-off between time and space, it will
be possible to solve even larger examples without major modifications. If some better

bounding method can be developed — and preliminary research indicates that this is

within reach, using linear programming with merged constraints, then the time traded

{
off will easily be regained. In fact, this indicates that a hybrid algorithm, partaking of ‘
both depth-first search and branch-and-bound techniques, may be best. o
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§. Conclusion

We have reviewed the methods proposed in the literature for dealing with the minimum
test set problem. We have evaluated the proposed selection heuristics and conjectured
that their worst-case behavior never produces solutions larger than twice the optimal,
providing two examples where this ratio is asymptotically reached. We have presented
the results of extensive experimentation with four backtracking algorithms. Our results
confirm that existing selection heuristics are quite satisfactory; they also indicate that
the best backtracking method involves a heuristic which uses the information criterion
for selecting tests and deriving bounds and relies on the least separated pair heuristic to
keep branching factors low. Experimentation with real world problems showed the
importance of pre-inclusion of essential tests; it also gave grounds for optimism since,
despite the known NP-hardness of the general problem, an inferior version of our pro-

grams solved large problems in a very short time.

Much work remains to be done. Better bounding methods must be sought, which

¢

apply even when variable outcomes are present. An extension of the information cri-
terion is the obvious first step. Beyond that, the use of the linear programming sub-
problem for deriving bounds (as used for the set covering problem in [10]) appears
promising; although the size of the linear programming problem grows faster than that

of the original problem, one can diminish it by merging some conditions, thereby relax-

ing the constraints (indeed, merging all conditions into one gives us the separation cri-
terion). In addition, the integer programming approach with cutting plane methods is

worth investigating, despite the size of its formulation. Most importantly, ways of

incorporating measured amounts of redundancy into the solution must be sought: the
minimum test set is, by definition, a fragile entity. While redundancy can easily be
incorporated through simple methods (such as insisting that each pair be separated by

at least two tests, whenever possible), the more complete risk model of pattern
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recognition [5] provides a suitable framework for more sophisticated methods.
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Optimal Solution of Linear Inequalities with
Applications to Pattern Recognition

D. C. CLARK AND R. C. GONZALEZ, SENIOR MEMBER, IEEE

Abstract—An algorithm for the optimal solution of consistent and in-
consistent lincar inequalities is presented, where the optimality crite-
rion is the maximization of the number of constraints satisfied. In the
serminology of pattern recognition, the algorithm finds a linear decision
function which minimizes the number of patterns misclassified. The
algorithm is developed as a nonenumerative search procedure based on
several new results established in this paper. Bounds on the search are
also developed and the method is experimentally evaluated and shown
%0 be computationally superioe to other techniques for finding mini-
mum-error solutions.

Index Terms—Algorithm, decision function, discriminant function, in-
equalities, linear, minimum ervor, optimal, pattemn recognition.

. I. INTRODUCTION

ORMAL APPROACHES to pattern recognition may be

. divided into two principal categories: syntactic and deci-
sion-theoretic [1], [2]. The syntactic approach is based on
the use of automata and language theory to process patterns
that have been expressed in terms of structural primitives. The
. decision-theoretic approach, on the other hand, deals with
techniques for obtaining decision functions capable of parti-
tioning sets of pattern vectors whose components are real, nu-
merical measurements or features.

Central to the decision-theoretic approach are methods for
finding decision functions that are optimal in some sense. In
statistical formulations, the approaches due to Fisher [3] and
Bayes [1] are the most commonly used in pattern recognition.
Fisher’s classic paper establishes a procedure for finding a lin-
ear discriminant function with the maximum ratio of interclass
to intraclass scatter. Bayes’ decision rule yields the minimum
expected loss and, in the Gaussian case, reduces to a quadratic
function determined by the mean vectors and covariance ma-
trices of the classes under consideration,

A criterion of optimality that has been receiving increased
attention in recent years is based on finding decision functions
which minimize the number of errors between two pattern
classes. Unlike the formulations mentioned above, ‘he ap-
proaches that have been proposed in this area are procedures
which employ the training patterns directly to find minimum-

Manuscript received April 3, 1980; revised February 4, 1981. This
work was supported in part by the Office of Naval Research under Con-
tract NOOO14-78-C-0311.

D. C. Clark was with the Department of Computer Science, Univer-
sity of Tennessee, Knoxville, TN 37916. He is now with the Pattern
Analysis and Recognition Corporation, Los Angeles, CA 90045.

R. C. Gonzalez is with the Department of Electrical Engineering, Uni-
versity of Tennessee, Knoxville, TN 37916.

error decision functions. The most noteworthy efforts in this
area are the algorithms proposed by Ibaraki and Muroga (4],
Warmack and Gonzalez [5], Miyake and Shinmura [6], [7],
and Miyake [8]. Other schemes which “tend” to minimize
the number of errors have been proposed by Mengert [9] and
Smith [10] (see also the comment by Grinold [11]). Finally,
we mention the stochastic optimization techniques by Wassel
{17] and by Do-Tu and Installe { 18] for minimizing the error
rate,

A two-class linear decision problem may be expressed as a
system of linear inequalities [1], [S]. In this paper, we de-
velop an algorithm for finding an optimal solution of consis-
tent (corresponding to separable pattern classes) and inconsis-
tent (corresponding to inseparable classes) linear inequalities,
where the optimality criterion is the maximization of the num-
ber of constraints satisfied by the solution. This criterion is di-
rectly analogous to minimizing the number of misclassified
patterns. The algorithm is developed as a nonenumerative
search procedure based on several new results established in
this paper. Bounds on the search are also developed and the
procedure is experimentally evaluated and shown to be com-
putationally superior to other published techniques for finding
minimume-error solutions.

I1. FOUNDATION
Consider the system of homogeneous linear inequalities

Aw>0 @.1)

where A is an m X (n+ 1) matrix with m > (n + 1), and w
is an (n + 1)-vector in R"*'. It will be assumed throughout
the following discussions that A satisfies the Haar condition
[11]; that is, every (n + 1) X (n + 1) submatrix of A is of rank
(n+1).

In the terminology of pattern recognition, w is a weight vec-
tor, each row of A corresponds to an augmented pattern vec-
tor so that g; ,,, =t1, and (2.1) is the statement of a two-
class, m-pattern problem in which the augmented patterns of
one class have been multiplied by - 1. The Haar condition im-
plies that the patterns are in general position [1].

Two pattern classes are said to be linearly separable if there
exists a w with the property that Aw > 0. (As indicated below
a w that satisfies (2.1) can be displaced so that it also satisfies
the strict inequalities Aw > 0). There exist a number of well-
known algorithms for finding a solution weight vector when
the classes are separable [1]. In the inseparable case, we are
interested in finding a weight vector that is optimal in the

0162-8828/81/1100-0643800.75 © 1981 IEEE
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sense that it satisfies the largest possible number of row in-
equalities in (2.1), and thus minimizes the number of patterns
that are misclassified.

Each row vector ; of A determines a hyperplane in R**!:

.”"{WERR“ll"W'O} (2.2)
fori=1,2,-++,m,and

net
G -w= IZ ayw;. 2.3)
=]
Each hyperplane H, is an n-dimensional subspace of R"*!
passing through the origin, and (2.2) also indicates that H is
the n-dimensional orthogonal complement of a;.
Since H, bifurcates R"*!, there is a quartet of open and
closed half-spaces corresponding to each hyperplane. They are
denoted by

Sio={wER"*! |¢;- w>0}
Sio={wER"*! |g;-w<0}

Sic={wER"*! |g;:w> 0}
3,,. = {WGR"” l" . W<0}. (2.4)

It is easily demonstrated that each of these half-spaces is con-
vex, and that the intersection of an arbitrary collection of con-
vex sets is itself convex. It is also noted that H; is the bound-
ary (ot frontier) of each of the half-spaces defined in (2.4).

A convex polyhedral set is defined as the intersection of a
finite number of closed half-spaces. Furthermore, because
they are closed under addition and nonnegative scalar multipli-
cation, the partitions of R"*! generated by the closed half-
spaces in (2.4) also satisfy the definition of convex cones
[13]-[15). Therefore, the partitioning of R"*! by {H;|i=1,
2, -+, m} establishes a finite set of convex polyhedral cones.
Each of these cones, generated by a finite number of support-
ing hyperplanes, contains the origin, is nonempty, closed, and
unbounded along its principal axis. The boundary of a cone,
formed by sections of its supporting hyperplanes, is called the
Jrontier of the cone, The intersection of n hyperplanes define
an edge on the frontier of a cone.

The concepts introduced in the above discussion are illus-
trated in Fig. 1. It is noted that a vector w contained in the in-
terior of a cone would yield strict inequalities, while a vector
contained in an edge would yield a zero inner product with all
the hyperplanes that define that edge. It is shown in [5] that
displacing an edge vector into the interior of a cone without
changing the sense of the strict inequalities is a simple matter
when A satisfies the Haar condition. It is also illustrated in
Fig. 1 that every cone Ciin R"*! has an image, denoted by C~,
about the origin. If the number of inequalities satisfied by a
vector w in C is less than or equal to k,,, , where

k, = {m/Z
(m+1)2

for meven

for modd, @)

........................
e e e T e e

AT

- Section of a
supporting hyperplane

Fig. 1. Illustration of a three-dimensional convex polyhedral cone, its
inpage, frontier, and edges.

then the number of inequalities satisfied by the image of w
(i.e., w™ =-w) is greater than or equal to &, .

1I1. DEVELOPMENT OF THE ALGORITHM

In the following discussion we make extensive use of the in-
dex set I(w) of a vector win R"*!, which is defined as the set
of integer values between 1 and m such that i is in I(w) if
a; - w <0, where g, is the ith row vector of 4. The error of w,
denoted by err(w), is defined as the cardinality of /(w); in
other words, the number of values of i for whicha; - w<0. In
order to simplify the notation, and since we are intetested
only in optimal solutions, it will be assumed throughout that
a vector w will be replaced by -w if err(-w) < err(w). We be-
gin the development with the following lemmas.

A. Two Basic Lemmas

Lemma 1: Let w be a nonzero vector in R®*!, Then either
w is an optimal solution of (2.1) or one of the hyperplanes H,,
i € I(w), contains an optimal solution of (2.1).

Proof: Let z by any optimal solution of (2.1) and let L be
a straight line segment extending from w to 2. We will show
that either w is an optimal solution of (2.1) or L N H; is an op-
timal solution for some i € I(w), which is sufficient to prove
the lemma.

If w = cz for some ¢ <0 then -w is an optimal solution and
we replace ~w by w. If w # ¢z for ¢ <O, then L does not pass
through the origin. In this case the set of optimal solutions ly-
ing on L consists of a series of one or more subsegments of L,
on each of which the same number of inequalities of (2.1) is
satisfied by each vector on that subsegment. Consider the sub.-
segment containing 2. One endpoint of this subsegment is 3.
Let the other endpoint be denoted by v, which is not 0 since
L does not pass through the origin and is optimal because it is
on the subsegment containing z. 1f w =0, then w is an optimal




CLARK AND GONZALEZ: SOLUTION OF LINEAR INEQUALITIES

solution, Since v is an optimal solution and it is also the end-
point of an optimal subsegment it follows that, if w # v, then
for some i, v EL NH;and g; - w < 0; that is, w is on the other
side of the hyperplane defining the end of the optimal subseg-
ment. Since g; - w <0, then we have { € I(w). This concludes
the proof. (]
In the following discussion it will be useful to consider the
notion of a minimum-error solution relative to a subspace S of
R"*'., By this we mean a nonzero vector v contained in S and
) with the property err(v) < err(w) for all nonzero wES. It is
noted that a minimum-error solution of (2.1) is a minimum-
error solution relative to R™*!,
Lemma 2: Let w be a nonzero vector in S, a subspace of
‘ R™*!. Then either w is an optimal solution of (2.1) relative to
S, or at least one of the subspaces S N H,, i € I(w), contains an
optimal solution of (2.1) relative to S.
Proof: The proof is analogous to that of Lemma 1. We
let z be any optimal solution relative to S and L the straight
line segment extending from z to w. Then L is contained in S
and the proof proceeds as before, but with the words “optimal
solution” replaced by “optimal solution relative to S.” 0
Given a nonzero vector w in R"*! and a hyperplane H;,i €
I(w), if z is an optimal solution of (2.1) that lies in H;, then
% is also optimal relative to /;. Hence, Lemma 1 implies that
if a set of vectors B contains w and at least one relative opti-
mal vector for each hyperplane H;, i € I(w), then B contains at
least an optimal vector relative to R"*". Thus, the search for
an optimal vector can be reduced to a search for relative opti-
mal vectors for each of the subspaces 4;, i € I(w). This search
for relative optimal vectors will be guided by the concepts es-
tablished in Lemma 2.

B. Search Trees

The search for an optimal vector may be expressed in terms
of a tree diagram. In order to illustrate this, assume that n +
1 =4 and that we begin the search with a vector w(1) lying in
the intersection of hyperplanes H,, H,, Hj; that is, w(l) €
H, N Hy NH,. If, upon performing the products @, - w(1),
i=1,2, - ,m, we find that w(l) lies on the negative side of
b hyperplanes Hy, Hg, Hs, and Hy, then I [w(1)] = {4, 6,8,9}.
This information is summarized in the following tree diagram.

(1,2,3)

4/ 6| 8\ 9

where (1, 2, 3) specifies the hyperplanes determining the start-
ing edge and each labeled branch represents a subspace (hyper-
plane) to be searched for a relative optimal solution. Once rel-
ative optimal solutions are found for H,, H¢, He, and H,,
Lemma 2 guarantees that either w(1), or at least one of these
relative optimal solutions, is an optimal solution of (2.1).

In order to search H, we apply Lemma 2, which requires
that we find 2 vector lying on the subspace S = H,. This can
easily be achieved by exchanging H, for H, so that the vector
will lie in H4 NHy; NH,. Let us denote this vector by w(2)

.............

............................

.........
'''''

wil)

Fig. 2. A simple search tree after computation of two edge vectors.

and assume, for example, that I[w(2)] = {11, 15}. Then,
Lemma 2 indicates that the search for an optimal solution rela-
tive to H, may be reduced to that of searching the subspaces
Hs NH,, and Hy NH,s. The status of the search is summa-
rized in Fig. 2. It is noted that the dimensionality of the sub-
spaces to be searched has been reduced by one; in other words, -

H;. Suppose that I[w(4)] = {5, 7, 10}. Following an argu-
ment identical to the one just given for w(3), we would find
the problem reduced to that of finding three vectors lying in
H‘ ('\H,s n”;, ”4 n”‘s nH‘), and H.ﬂH,s f'\Hm, Te- R
spectively. Let us denote these vectors by v4, 04, and vs. The ST
initial problem of finding an optimal solution relative to H, ®o
has now been reduced to that of selecting from among the vec- [
tors v, through vs the one with the lowest error. The search
up to this point is summarized in Fig. 3. It is noted that this
completes the examination of subspace H, and that no other
vectors contained in this subspace can yield a lower error than
the best vector in the set v, through vs. Thus, at this point in
the search, an optimal solution relative to /4 has been found.
In order to continue the search, we would next consider
another hyperplane from the set {Hg¢, Hy, Hy} and repeat the
procedure discussed above for obtaining a relative optimal solu-
tion. When all these hyperplanes have been considered, either
w(l) or at least one of the optimal solutions relative to H,,
Hg, Hg, or Hy, would be an optimal solution to (2.1). It is
noted that the number of levels traversed in the tree in order
to examine each hyperplane for a relative optimal solution is
n+ 1. In the following discussion we formally define the con-
cept of a search tree and prove (in Theorem 1) that a search

we started searching H, (an n-dimensional subspace) and the 9
problem now is one of searching the subspaces Hy N H,; and B
H4 N H g which are (n - 1)-dimensional. : S
In order to find an edge on H, NH,,, we can replace H, to e ﬁ
obtain w(3) € Hy N H,, NH,. Suppose that I{w(3)] = {6, DS
12}). According to Lemma 2, the search for an optimal solu- Lo
tion relative to H, NH,, is reduced to that of searching the ®
subspaces Hy NHyy NHg and Hy NHy,y NH,y,. In our ex- R
ample, these are one-dimensional subspaces since n+1=4, AR ]
Thus, the problem at this point is simply that of finding a vec- e
torin Hy NH,; NHe and avectorinHy NHyy NHy;. Letus ~
denote these vectors by v, and v,. IR
In order to continue the search, we find w(d)EH, NH,;s N "——_‘!

.
e
s’ a 8.0

g
.
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w(l)

1.2,3)

(4,2,3)

w(3)(14.11,3)
wiah{4:15:3)

Fig. 3. Search tree after subspace H4 has been examined.

tree leads to an optimal solution of (2.1). Procedures for re-
ducing the size of a search tree are discussed in Sections III-C
and I11-D. .

Let w(1), w(2), - - - , w(p) be nonzero vectorsin R"*! ,and
let I;=I[w()), i=1,2,---,p. Assume that for k=2,3,
+++,p,we have

W(k)e”“ n”,z 0_:' ‘nH’k_l (3.1)

fo", €I,.l, e’z, b !Ik-l e’k-l' We then define a search
tree as the vectors w(l), w(2), - - -, w(p) together with the

following subspaces:
H,, ih€h, (#h),
H, NH, €L, (h#h),
H,NH,NH, €D, (s#h)

”‘l nll,, "’n”'p_’n”"_l
bp-1 €Iy, (p-y #lp-1),

ll,.ﬂﬂ,,n---ﬂﬂ,p_lnﬂl’ i' elp. (3.2)

The above set of vectors and subspaces can be represented
schematically by the diagram shown in Fig. 4. We may think
of w(1), w(2), - - - ,w(p) as “starting vectors” for examining a
series of subspaces for relative optimal solutions. Thus, w(l)
is the starting vector for R"*!, w(2) the starting vector for
H,,, w(3) the starting vector for Hy, N Hy,, and s0 on. These
vectors play the role of w in Lemmas 1 and 2. The top-evel
branches in Fig. 4 represent the subspaces H;, i€/,, the
second-level branches the subspaces Hy, N H;, i€1,, and so
on. According to Lemmas 1 and 2, these are the subspaces
that must be examined for their relative optimal solutions in
order to obtain relative optimal solutions for R"**, H),,
My, 0 Hy,,---. For clarity we have not labeled all the
branches in the diagram of Fig. 4, but have instead indicated
the index sets from which these labels would come.

The following theorem generalizes Lemma 2 and establishes
that a search tree leads to an optimal solution of (2.1).

Theorem 1: Let w(l), w(2), - - -, w(p) satisfy (3.1) and let
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w(l)

L3
I
1
w(2)
1
L,
w(3)
wip)
xP

Fig. 4. Schematic diagram of a general search tree.

least one optimal vector relative to R"*! in the set

T, U (wk)|k=1,2,--,p} (33)
forp=1,2,"*",n.

Proof: Consider the following subspaces:

0, =V {H iy €l,,iy #1,} .

Q2 =V {H; NH,,|iy €L, iy #1,}
oy =UH, 0N Hy

OHy, -2 €1p-ysip-1 #1p-,)
Op=U{H, N---NH,_ OHpli, €1} (34)

where, in the last expression, inclusion of the “~” means that
ip is allowed to equal /. It then follows from the statement
of the theorem that

T,=QUQ, U---UG,. (3.5)

Forp=1,T, =V {H, i, €1,} and the theorem reduces to
Lemma 1. For p>1 we use Lemma 2 and induction on p.
Assume that the theorem is true for p =¢; we then wish to
prove that it is also true for p=q + 1. In other words, we as-
sume that

Tq U {w(1),w(2),-- -, w(@)} (3.6)

contains at least one optimal solution and we wish to prove
that this is also true for

Tqﬂ v {W(] )' w(2), ttty w(q)v W(q + l)}-
From the above use of the symbol “~”, we have that
0q=Qq VU H,NH, O OHy _ N Higllg=lg}

€)

oy
LIRS
.
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w(l)

e

w(3)

zq_,
wi(q)

Fig. 5. Search tree diagram used in the proof of Theorem 1. The cir-
cled branches in each level represent the subspaces (hyperplanes) used
in forming the set Q at that level.

where
S=Il,|nlf,zn '-nﬂ,q-'ﬂli,q. (3.9)

The situation is shown in Fig. 5, in which 0,,0Q,, -, Q, are
the subspaces formed by the union of hyperplanes represented
by the circled branches. To form Q, we simply include hyper-
plane H, A in the union of the hyperplanes forming Q,.

It is noted in Fig. 5 that w(g+1)EH, NH, N
ﬂll,q_l nll,q. In other words, w(g + 1) €S. It then fol-
lows from Lemma 2 that either w(g + 1) is an optimal solution
relative to S or there is at least one optimal solution relative to
S in the subspaces SN H, o1 lqe1 €lg4y. Representing
these subspaces by U {an,qﬂlt,,., € I4.,}, we note that

U{sn”‘¢o|h¢’| 6’q¢|}=Qq¢|-
Since
Te=0,UQ, U---Ud,,
Tqni=Q1VQ, UV "UQquéﬂﬂ'

and Q, = éq - § (where *“- represents set subtraction) it fol-
lows that

(3.10)

Ter =(Tg-$)U0q., @G.11)
so that
Tqoi V{w(l),w(2), -, w(@),w(g+1)} .
= [(Tq - SHV {w(l),w(2), -, w(g)}] '
U (g1 Uwig +1)). 3.12)
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In order to finish the proof, we only need to show that either
of the subspaces [(Tg - S)U {w(1), w(2), -, w(g)] or
(2] . Uw(g +1)] contains an optimal solution relative to
R"*!, Letting z represent an optimal solution relative to S,
we know from Lemma 2 that eitherz=w(q + 1)orz € Q,., :
that is, Qq,, U w(q + 1) contains an optimal solution relative
to S. If z is also an optimal solution relative to R"*! we are
finished with the proof. If this is not the case, then S does not
contain an optimal solution relative to R” *! and it may be de-
Jeted from further consideration in the proof, leaving the sub-
space T, U {w(1), w(2),---,w(q)}. However, we know
from the induction hypothesis that this subspace contains at
Jeast one optimal solution relative to R™**, This concludes
the proof. . a

C. Reduced Search Trees

The number of branches that are investigated in a search tree
can be reduced by keeping a record of the subspaces that have
already been searched. This will eliminate computation of the
same information more than once and thus reduce the time re-
quired to complete the search for an optimal solution. In this
section we consider techniques for reducing search trees and
prove that a reduced search tree will lead to an optimal solu-
tion of (2.1).

Let w(1), w(2), - - - , w(p) be nonzero vectors in R"*!, and
let 13, I3, ,Ip and Jy, Jy, -+, J, be sets of integers be-
tween 1 and m satisfying the following conditions:

Lcl, i=1,2,---,p (3.13)
NnJ=¢, i=1,2,--",p

F=1,2,°-,i (3.14)
LCcvly)
LCUVILUTL) (3.15)

LCUpUI,U---UD,).

A reduced search tree is defined as a set of vectors w(k), k=1,
2, - -, p satisfying (3.1) for some valuesl, €/}, L, €13, - -+,
lp -y €I, -, together with subspaces of the form

H;, HWENL VLI #£1,
Hy, OH, LENRUJ L #1,

H 0---0H, OH,
ip.1 €l VI,
H,n---0H, NH, €LV,

where Iy and Jy , k=1,2, -+ p, satisfy (3.13)-(3.15).

The diagram of the search tree just defined is shown in Fig.

6. The interpretation given to the sets /; and Ji is that ele-

:ments of J, indicate subspaces (shown as dashed branches)
already examined for a relative optimal solution, while ele-

ments of /; indicate subspaces yet to be examined, or in the

process of being examined. These subspaces are denoted by

solid branches in Fig. 6. Condition (3.13) indicates that in-

ipay #1,.
(3.16)

LR Bl B ) e
AR x__\_.
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w(l)
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w(d)

Fig. 6. Diagram of a reduced search tree.

dexes corresponding to subspaces to be examined are elements
of a valid index set. Condition (3.14) indicates that we need
not examine any subspace of a subspace already examined.
Condition (3.15) is a requirement that we examine each of the
subspaces corresponding to the index set /; that have not al-
ready been examined. It is noted that the set J; (which gives
the indexes of hyperplanes to be considered at the ith level) is
formed by deleting from I; any indexes contained in J;, j =
1,2, i

Corollary 1: Let w(l1), w(2), -+, w(p) satisfy (3.1) for
LENn, LEDn, - L I, where I}, I}, I, satisfy
(3.13), and let ¥, be the union of all the sets in (3.16), where
n,n, -, M- ,Jp, satisfy (3.14) and (3.15).
Then, there is at least one optimal solution vector in the set

VoV {wk)|k=1,2,---,p}. 3.17

Proof: The proof follows from Theorem 1 by noting that
LTV, Ip,CUyVJ,U---UJp)and that T, C
Vp. o
Another important property of search trees that leads to
further reductions in computation is that any of the starting
vectors and its index set may be replaced by a bottom-level
starting vector and its index set. The result will still be a
search tree that satisfies Theorem 1 and its corollary.

In order to illustrate how the condition given in (3.14),
along with the above replacement procedure, can be used to
reduce the search for an optimal solution, consider Fig. 7(a)
which shows a tree at some stage of a hypothetical search.
The branches taken from left to right and top to bottom repre-
sent, respectively,

”l-”‘v”i
HeNHy HiNHy, He O Hy Hy N Hy

and the dashed branches represent subspaces that have already
been investigated for relative optimal vectors. It is noted that

N A,

alaln

CRENA Al S A

ane ave - il Sl T I TR AL B
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the index sets of subspaces to be investigated (i.e., /; and /3)
do not contain the indexes of subspaces already searched at, or
above the second level of the tree, as indicated in condition
(3.14). Suppose now that a new vector, ¥ = w(3), lying in
H, N H, has been computed and its index set is /3 = {1, 8,
10}, as shown in Fig. 7(b). In order to continue the search
using this new vector, we have the three possibilities shown in
Fig. 7(c)-(¢). In Fig. 7(c) we simply leave w(3) in position
and delete the branches labeled 1 and 8 because they represent
subspaces that were already investigated at a higher level in the
tree. In Fig. 7(d), w(2) and its descendants were replaced by u
and its descendants, deleting at this level any dashed branches
that appear at a higher level (i.e., the branch labeled 1 in this
case). It is noted that any dashed branches that do not satisfy
this condition (i.c., the branch labeled 3) are retained to show
later in the search that they have been investigated at that level
of the tree. Finally, Fig. 7(e) shows the entire tree replaced by
u and its descendants. At this level only A, has been investi-
gated so the dashed branch labeled 1 is retained and the
branches labeled 8 and 10 are solid, indicating that they still
have to be searched for a relative optimal solution. It is noted
that all three possibilities in Fig. 7(c)-(e) satisfy the condi-
tions of Theorem 1 and its corollary; thus, either of the three
choices to continue the search will lead to an optimal solution.
Our goal is to choose the candidate with the most potential for
reducing the search. The criterion we will use is to place u at
the highest possible level in the tree such that the number of
solid branches at that level is less than before. This criterion
seeks to reduce the search by trimming off, at the highest pos-
sible level, subspaces that would have been investigated in the
original tree. We are thus lead to the following rule.

Replacement and Deletion Rule: Let u = w(r) with original
index set () be a vector computed at the bottom level 7 of a
search tree. For valuesg=1,2,°-+,r- 1,welet

L@ =I@)- {J; VI, U---VJ} (3.18)
and
Jo)=Jq (3.19)

where “- " indicates set subtraction. We then choose the small-
est value of g, if any, for which cardinality [l; )] < cardinal-
ity [/5], and replace w(q) and its index sets by u and the in-
dex sets given in (3.18) and (3.19), deleting all descendants of
w(g)- If no such value of q exists, no replacement takes place
and the index sets at the rth level are given by

L=Iw- {J,V/u---UJ,_,} (3.20)
and
J, =9. 321

It is noted that any indexes of subspaces already investigated
at a higher level in the tree are deleted from /(u) to form l; )
and that J, (&) retains all indexes of subspaces already investi-
gated at level g. In (321), J, = ¢ because r is at the bottom
Jevel of the search tree and no subspaces have yet been investi-
gated at that level.

Returning to the example in Fig. 7, we see that the above

...............
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w(l)

Il = {1,4,8)

wi3)

w(2)

(©)

Fig. 7. (a) Search tree. (b) New vector computed in Hq N H4. (c)
through (e). The three possibilities involving u = w (3) in the con-

tinuation of the search.

rule would choose the configuration shown in Fig. 7(d) to con-
tinue the search.

D. Ordering of the Index Sets
Each node in a search tree represents a vector established by

the intersection of # hyperplanes. As shown in Fig. 8, a vector
at the kth level in the tree satisfies the requirement

w‘k)e’l"nﬂhn' --nli,k_lnH,an,k”ﬁ--.-ﬂH,n
(322)

where I Sk<nand €7/, i=1,2,:-- k- 1. Asindicated
in Section III-B, we compute a vector w(k + 1) at the next
level by replacing 4, by a hyperplane H;, with iy € Iy. In or-
der to stress the dependence of w(k + 1) on iy we will, in this
section, represent these vectors by w(k + 1, ;). Then,
W(k + l.f,)E ”,‘ 8] I{'2 .- .”'k—l
nll,kﬂll,k”n-'-nﬂln (3.23)

for some iy € Iy. There are as many of these vectors as there
are elements in I;. 1In order to continue the search we may
take any of these, obtain 7} ,,, compute w(k +2), and so on.
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= {4,5}, I

= {3.8.7,9)

I; = (7,9}, Jz = {3,8)

w(l) = g ¢ HyNHy

= (1) I{u) = IJ

= {1,8,10)

®)

w(l) = w c H N,

@

()

R “Hl.

w(k) € H, N"\H, ...
"1 lz 1

k-1 k

NHy  NeconHy

k+1 n

Ve

(k+1) ¢ H, NH, .o B NH, nH N
v 1, M, ey iy "kol" n L,
Fig. 8. Illustration of a vector w(k) at level k of a search tree and the

computation of w(k + 1) by replacing H,k by H,k, ixely.

However, since we are seeking a minimum-error solution, it
would be advantageous to be able to select the w(k + 1, i;)
j with the smallest error as the next candidate in the search.
| The brute-force method of computing all w(k + 1, i)) and
choosing the best one would be in general unacceptable in
'view of the fact that the replacement and deletion rule will in

v
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(%)

1\

I,

[] .

4 w(k)}

H, nV,
"h 3

ay /

Fig. 9. Example of subspace V.

many cases eliminate the consideration of some of these vec-
tors in the first place. In this section we develop a technique
for obtaining the errors of all w(k + 1, iy), ix € Iy, without
actually having to obtain these vectors directly. These error
values can then be used to rearrange the elements of /; so that
they are considered in order of increasing error. As shown be-
low, the method is very economical from a computational
point of view.
The subspace

Vk =l{,|ﬂH,zﬂ---ﬁH,k_l ﬁH,kH ﬁ---ﬂH,n
. (3.24)

is two-dimensional and it contains both w(k), which is known,
and w(k + 1, iy), ix € I}, which are unknown. Let z(k) be a -
vector contained in ¥, and orthogonal to w(k). (The vector
z(k) may be found, for example, by Gaussian elimination.) It
then follows that each w(k + 1, i) may be expressed as a lin-
ear combination of w(k) and z(k).

Fig. 9 illustrates a typical geometrical configuration within
the two-dimensional subspace V. A vector w(k + 1,i;) liesin
the intersection (shown as a dashed line) of H;, with V;,and
w(k) lies in the intersection of H;, with V. The projection of
the normal to H, (see Section II) onto the ¥ plane is shown
with coordinates (a,, @, ), where a;,_ is the row vector of A de-
termined by the value of ix. From simple geometrical consid-
erations we have that

(@, )= (g, w)/||w®)|.a;, -z} ||zR)|)  (3.25)
and

e cote (3.26)

ay

where © is the angle from the w(k) axis counterclockwise to
the dashed halfine. Finally, we define the quantity y(j) as

1(/) = ;- w(k)/a; - z(k)
=-Ccot® (327)
where C = [|w)||/]|z2(x)]]-

Based on the foregoing concepts, we define the following
ordering rule.

1) Let D be the set of indexes of the hyperplanes determin-
ing w(k); that is, from (3.22), D= {l;, I, -, l,}. A vector
w(k + 1, iy) lies on the hyperplanes with indexes in this set
(except H,,) since Hy, , Hyy, " - ,H,k_l,H,,‘”. o0, Hy, de-
fine V.

2) Let b(k) be given by

0 if a,-2(k)>0
b)=
1 if a -2(k)<0.

3) For each iy €I}, let

M(i).) = number of hyperplanes H; for which v(j) < y(ix),
l<i<m,]¢l',‘UD

N (i) = number of hyperplanes H, for which v(q) <7y (i),
q €[ K+

4) For each iy € Iy, compute the error of w(k + 1, i;), as
follows:

err [w(k + 1,ix)] = err [w(k)] + M(ix) - (WGr) + 1) + b (k).

5) Rearrange the elements of /; in order of increasing error.
Elements with the same error are ordered arbitrarily.

As an illustration of the ordering rule, consider a problem in
which m =10, n =4, and suppose that we are at the second
level in the search tree with w(2)=H, NHy NHy N H,,,
L ={3.5,6},and I; = {5, 6}. In thiscase V, =H, NH, N
Hw, D=1{2, 4, 8, 10}, and suppose that a4 -2(2) > 0. The
situation is shown in Fig. 10, where the hyperplanes with in-
dexes in /3 are circled. Note that H,, Hy, and H,, are not
shown because they define ¥;. By definition, w(2) lies on the
negative side of the hyperplanes with indexes in /; and on the
positive side of all other hyperplanes with indexes not in D.
Since a -2(2) >0, 2(2) lies on the positive side of Hy N V,.
The error of w(2) is 3 because /, contains three elements. We
also note that, since - cot © is an increasing function of © for
0<O<n, Y(1)<Y(5)<79) <r(3)<7(6) <7(7). Thus,
to compute err[w(3,5)] we first compute M(5)=1 and
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Fig. 10. Ilustration of the ordering rule.

N(5)=0. Then, since 5(2) =0, it follows from step 4) that
err [w(3, 5)] =3. Similarly, M(6) =2,N(6) =2, and err [w(3,
6)] = 2. Thus, the ordered index set becomes /3 = {6, 5}.

The key to the above procedure lies in the fact that -C cot ©
is an increasing function of @ for 0 <© <7 and, thus, can be
used to determine the positive and negative side of any hyper-
plane with respect to a vector contained in the one-dimensional
subspace H;, N Vi and oriented in the 0 <O < direction.
For instance, in the example just described, it is noted that
M(5) gives the number of hyperplanes for which y(j) <¥(5),
j & I U D; that is, M(5) is the number of hyperplanes whose
intersection with V; are to the right of a vector contained in
Hs NV,, excluding hyperplanes with indexes in /, and D.
Since these exclusions guarantee that all hyperplanes used in
the computation of M(5) have their positive side facing w(2),
it follows that the intersection of any of these hyperplanes
which is to the right of a vector contained in Hg N ¥V, will
yield an error (negative product) with respect to a vector
w(k +1, i), k=2, i, =5, contained in that one-dimensional
subspace and oriented in the 0 <O <n direction. In the
above example only one hyperplane, #,, satisfies the condi-
tions necessary for use in the computation of M(5), yielding
M(S5)=1. Similarly, N(i,) is the number of hyperplanes whose
intersections with ¥y are to the right of a vector w(k +1,iy)
in H;, NV, but whose indexes are in /; and, therefore, have
their negative sides facing w(k). Since err[w(k)] gives the
total number of these hyperplanes, it follows that the quantity
err[w(k)] - N(i;) - 1 is the error with respect to w(k + 1,ix)
of all hyperplanes with indexes in /. (The -1 is included to
reduce err[w(k)] by one because H,k contributed to this error
since iy € I;; however, H;, contains w(k + 1, ix) and, there-
fore, does not contribute to err[w(k + 1,i,)]). In the present
example with k = 2 and iy =S we have that V(5) = 0.

At this point all hyperplane intersections with ¥}, except
Hy, N Vi (Ix = 4), have been taken into account. In order to
establish the contribution of H;, to err[w(k + 1), ix)], it is
only necessary to determine the positive side of /;, N Vy with
respect to the half space 0 <O <x. This is easily accom-
plished by using 2(k). If g, -2(k) >0, the positive side of
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Hy, N Vy faces the half space just mentioned and 4, does not
contribute to err[w(k + 1, i¢)]; that is, 5(k) =0. Otherwise,
the error is increased by one by letting (k)= 1. In the pres-
ent example /; =4 and we have that 5(2) = 0 because it was
assumed thata, -2(2)>0.

With reference to step 4) of the ordering rule, and based
on foregoing discussion, it is seen that all contributions to
err[w(k + 1, ix)] have been taken into account. The hyper-
planes with indexes in D were not considered because, with
the exception of Hj, , they combine with H,, to form the edge
containing w(k + 1, ix), as shown in (3.23). As indicated in
Section II, w(k + 1, ix) can be displaced so that it yields a
positive product with all the edge hyperplanes, so they would
not contribute to the error of this vector.

E. Statement of the Algorithm

The concepts developed in Sections III-A-D lead to the f;>l-
lowing algorithm for finding an optimal solution of (2.1). -

Notation:

w*  an optimal solution of (2.1) at the termination of the
algorithm

k level in the search tree

E,  set of indexes of n hyperplanes used to compute an
edge vector at the kth level; this vector can be com-
puted by Gaussian elimination or by using the method
discussed in [S] -

w(k) edge vector computed at level k

Iy index set of w(k)

Jx  index set of subspaces already examined at level k

I index set of subspaces to be examined at level &

@ empty set

Step 1 (Initialization). Let
a) w* = arbitrary starting vector';
b) "i=¢li=l|2"..’n- 1;

TAn alternative is to start with 2 quasi-optimal vector determined, for
example, by a procedure such as Fisher's [3]. We have found, however,
that progress toward an optimal solution is at first rapid, thus partially
negating any advantage that may be gained by using additional (and
more complex) techniques to estimate a “better” starting vector.
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¢) £, ={1,2,-+,n}; that is, select the first n hyper-
planes to compute w(l);
d) k=1

Step 2:
2) Compute w(k) using the hyperplanes with indexes in
Ey.
b) Compute /.
) Iferr[w(k)] <err(w*), let w* = w(k).
d) If err[w(k)] =0, go to Step 9.
e) Ifk=n+1,set k=nand go to Step 8.

Step 3: Apply the replacement and deletion rule, denoting
by q the level at which replacement took place. The index sets
I and J, are given by (3.18) and (3.19).

Step 4:

a) Letp=k,k=q,Iy =IgandJy =J,.

b) LetJ;=¢ forallj > k. _

¢) If Iy = ¢, go to Step 7. Otherwise, rotate the elements
in E, starting in the kth position so that the element in the
pth position goes into the kth position. The elements to the
left of the kth position are not disturbed. Replace the ele-
ments in £, by the elements in £, after rotation.?

Step 5:

2) Rearrange the elements of I, in order of increasing er-
ror by applying the ordering rule. Let en;, be the minimum
error found.

b) Letj=1.

Step 6:
3) If k=n and ep,i, > err(w*), go to Step 8. Otherwise,
continue.
b) Let E,, =E, and then replace the kth element of
Ey ., by the jth element of /x.
¢) Incrementkandjby 1.
d) Go to Step 2.

Step 7: If k=1, go to Step 9. Otherwise, set J, = ¢ and
continue.

Step 8:
a) Decrementk by 1.
b) Transfer the jth element of /i to J, to indicate that
another subspace has been searched at level k.
¢) If the jth element was the last element of I, go to Step
7. Otherwise, go to Step 6.

Step 9: Stop with edge vector w* as an optimal solution of
(2.1). Displace w* into the interior of the optimal cone by
using the procedure described in [5].

IV. Bounps oN THE NUMBER oF EDGES
INVESTIGATED BY THE ALGORITHM

An exhaustive search for an optimal solution carried out by
obtaining one vector in each cone edge would require the com-
putation of C’ such vectors. For algorithms employing the

3For example, suppose k =2, p=4, and E4 = (e}, e5, 3, €4, €5 }.
We 1otate the elements starting in the sccond position so that the cle-
ment in the fourth position goes into the second position. The ele-
ments to the left of the second position are not disturbed. After rota-
tion and letting £ = E4 we then have £y = {¢y, ¢4, €5, €3, €3}. This
$tep updates the hyperplane indexes at level k by taking into account
the fact that a vector at level p was brought up to level &.
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concept of an index set to reduce the search, it has been
shown [S] that the ratio W, ,/CT' is sisictly less than 1,
where W,, , is the number of edge vectors computed under
worst case conditions at each step in the search. Experimental
results [S] indicate that the actual number of vectors com-
puted in a search can be expected to be considerably less than
the theoretical upper bound.

The theoretical upper bound derived in [5] would apply to
the algorithm developed in Section Il (since it too is based on
the use of an index set) in the case when the search is never
restarted and none of the index sets are ordered. When use is
made of restarting and ordering we would expect the number
of vectors that need to be investigated to be significantly re-
duced, and the results presented in the next section bear this
out. Aside from the fact that a th oretical upper bound can
be established under worst case conditions, derivation of an
upper bound that takes into account restarting and ordering
does not appear feasible because the advantages derived from
these procedures are data dependent. It is possible, however,
to obtain an expression for the lower bound (as a function of
the error of an optimal solution) on the number of vectors
that must be investigated by the algorithm. This result, given
as a corollary of the following theorem, is quite useful because
it establishes a guideline for the minimum amount of computa-
tional work required to find an optimal solution of (2.1).

Theorem 2: Let e =err(w*) be the number of errors in-
curred by an optimal solution, w*, of (2.1). Suppose that the
algorithm commences searching a subspace H of dimension
p > 2 when 7 subspaces of dimension 3 p have already been
searched, where r <e. Then, in order to complete the search
of H, the algorithm must compute at least C52*?~? edge
vectors contained in /.

Proof: The proof is by induction on p. When p =2, the
theorem asserts that the algorithm computes at least one edge
in H to complete the search of H. This assertion is obviously
true. Suppose the assertion of the theorem is true for p = k;
we wish to prove that it is true forp=k + 1, where 2<p <
n+l.

When the algorithm commences searching A , it first com-

putes an edge vector w EH and the set /(w). The cardinality
of I(w) is at least e, since the minimum error of any edge vec-
tor in R"*! is e. According to the induction hypothesis, r
subspaces of dimension >k + 1 have already been searched,
wherer <e. *
Alf r=e, it is possible that all of the subspaces of the form
H N H;, i € [(w), are subspaces of the r subspaces which have
already been searched, inﬂwhich case the algorithm has already
completed the search of i, having computed one edge w in H.
The assertion of the lemma is that the algorithm must com-
pute at least

Coii*P =il =1 @.n
edges in A ; hence, it is a true assertion in this case.

If r<e, then the algorithm must search some subspaces of
the form H N H,. Consider first the case where throughout
the search there is no replacement of the initial vector w and
index set /(w). Then the algorithm must search at least e - r
of the subspaces of the form H N H,, i € I(w), each of which
is of dimension k. Upon commencing to search the first of
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these subspaces, there are r subspaces of dimension > k already
searched. Upon commencing the search of the gth of these
* subspaces, 1 <q<e -7, there are r+q -~ 1 subspaces of di-
mension > k already searched. Therefore, by use of the induc-
tion hypothesis, we see that to search the qth of the subspaces
H N Hy requires the computation of at least C¥ 27~ 9*1+%-2
edges, and that the search of H requires at least

e~r
1+3 CEoyariek-2 “2)
q=1
edge computations. By lettingj=e - r- q + 1, this quantity
can also be expressed as
e=r
1+ cli¥, 4.3)
o Im
It is easy to show that (4.3) is equal to
CEopek-t, (44)

Hence the lower bound of Theorem 2 has been verified for
P =k +1 in the case where there is no replacement of the ini-
tial vector w.

In the case where w is replaced, it can be seen that the
same lower bound is still valid because the algorithm must
still search at least e - r subspaces of the form H N H;, and
the gth subspace searched requires the computation of at least
CEI1-9*%-2 gdges, as before. This concludes the proof. O

Corollary 2: Let e=err(w*) be the number of errors in-
curred by an optimal solution, w*, of (2.1). Then the lower
bound on the number of edge vectors computed during execu-
tion of the algorithm is given by the binomial coefficient

=(e+n- Ne+tn-2)---(e+1)

esn-~-1
Cely @-1 “4.5)
jo .
: Proof: The proof follows from Theorem2 with # =R"*!
p=n+l,andr=0. 0

: The lower bound given by (4.5) is shown in Table 1 for vari-
& ous values of e and n. These values are compared in the next
: section against the number of edge vectors actually computed
by the algorithm in 2 number of examples.

V. EXPERIMENTAL RESULTS

The algorithm developed in Section III was programmed in
Fortran IV and run on an IBM 370/3031. The following re-
sults illustrate the performance of the procedure in separable
and inseparable situations.

Experiment 1: The first example is based on the measure-
ments performed by Fisher [3] on three types of iris flowers:
Iris Versicolor, Iris Virginica, and Iris Setosa. For each type of
flower, four measurements (petal length and width and sepal
length and width) were taken on 50 specimens. This leads us
to consider three two-class discrimination problems with m =
100 and n=4. The results summarized in Table II agree with
the well-known fact that two of the pairs are separable, and
one pair is inseparable with the optimal solution yielding one
error. [t is of interest to compare the lower bound given in
Table I with the actual number of edge vectors computed by
the algorithm in the inseparable case. In the separable case,

TmTe e e LT e e e e T e e N T T

R R SN

L W AN SN i D A AR A MY

CRAC S -

TABLE 1
Lower Bounp oN THE NuMBER OF EDGES COMPUTED BY THE ALGORITHM
X 2 34 5 6 1 8___9 10
1 H 3 4 H 6 7 8 9 10
2 3 6 10 15 21 8 36 45 55
3 4 10 20 35 56 8¢ 120 165 220
4 5 15 3 0 126 210 330 495 ns
s 6 2 S6 126 252 462 792 .1,287 2,002
6 7 28 8¢ 210 462 924 1,716 3.003 5,005
7 8 3 120 330 792 1,716 3,432 6,435 11,440
8 9 45 165 495 1.287 3,003 6.435 12,870 24,310 e
9 10 S5 220 715 2,002 5,005 11,440 24,310 48,620 e
10 n 66 286 1,001 3,003 8,008 19,448 43,758 92,378 <t
“TABLE 1l _lf‘j‘ff
PAIRWISE DISCRIMINATION OF THE IR1S DATA CLASSES R
Classes discriminated: Versicolor, Virginica
Weight vector: 0.0038 0.0070 -0.0208 -0.0251 1.0000
Error: 1
Lower bound: 4
No. of edges
computed: 49
CPY time: 1.61 sec.
Classes discriminated: Virginica, Setosa
Height vector: -0.0087 0.0131 0.0257 -0.0033 -1.0000
Error: 0
No. of edges
Conpted 10
CPY time: 0.34 sec.
Classes discriminated: Setosa, Versicolor
Weight vector: 0.0378 -0.0118 -0.064 -0.0355 -1.0000
Error: 0
No. of edges ,
computed: 19 -
CPy time: 0.59 sec. v e

the minimum number of edges that the algorithm must com-
pute is, of course, 1.

Experiment 2: In this experiment we compared the perfor- ::-_-j- :
mance of the algorithm against the procedure developed by Ny
Warmack and Gonzalez [S] which is also based on the use of
an index set. Two four-dimensional Gaussian classes of 50
patterns each were generated using a program developed by
Bryan and Tebbe [16]. The two pattern populations were
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TABLE 111 .
RESULT oF EXPERIMENT WITH FOUR-DIMENSIONAL, INSEPARABLE
GAUSSIAN DATA

Veight vector:  -0.4903 -0.2100 -0.389% -0.2276 1.0000
Ervor: 4

Lower bound: k

No. of edges

computed: 238

CPY time: 8.85 sec.

TABLE 1V
ResuLT oF EXPERIMENT WITH SiX-DIMENSIONAL, SEPARABLE
GAUSSIAN DATA

Veight vector: =7.1933  -9.6779 1.5035 -2.7608 -4.2783
-3.6190  1.0000

Error: [

No. of §ges

computed: 36

CPU time 1.67 sec.

TABLE Vv
ResuLt of ExreriMENT wiTh Two Five-DiMensioNAL PATTERN Crasses
SePARATED oY THE BounDAaRY sy + iy + xs + xa+ s = 1.5=0

Weight vector: -0.7255 -0.2162 -0.6915 -0.6420 -0.6328 11,0000
Error: 0

no. of sgu ’

computed: 82

CP time: 380 sec.

4
generated by specifying an identity covariance matrix for each
class with mean vectors (0, 0,0,0)and (1.5, 1.5, 1.5, 1.5), re-
spectively. The results are summarized in Table III, which
shows that 235 edges were investigated, requiring 8.85 s of
CPU time. By contrast, the Warmack-Gonzalez algorithm in-
vestigated 15 854 edges requiring a total of 206 s of CPU time.

In another experiment we generated two groups of six-
dimensional patterns with unity covariance matrices and mean
vectors with components equal to -0.75 and 0.75, respectively.
In this case the classes were linearly separable, and the results
as summarized in Table [V, which shows that 36 edges, requir-
ing 1.67 s, were investigated by our algorithm. By contrast,
the Warmack-Gonzalez algorithm computed 51 826 edges, re-
quiring approximately 13 min of CPU time.

Experiment 3: In this example we compare our algorithm
against a procedure developed by Miyake (8] . Using the mul-
tivariate Gaussian generator mentioned in the previous exam-
ple, two groups of 100, five-dimensional patterns with unity
covariance matrices and means at 0 and (0.6, 0.6, 0.6, 0.6, 0.6)
were generated satisfying the conditions x, + x, + x5 + x4 +
X3 - 15250 and xy +x3 +x34x4 +x5 - 1.5<0, respec-

The results are summarized in Table V, which shows that 82
edges were investigated, requiring 3.80 s of CPU time. Miyake
reported CPU times of 10-25 min (depending on the starting
weight vector) on a data set generated with the same parame-
ters. He used a FACOM 230-45S, which is approximately four
times slower than the IBM 370/3031. Taking into account the
difference between the two machines, and using the lower 10
min figure to allow for programming and other variations in
implementation between the two experiments, it appears that
the procedure reported in [8] is, conservatively, on the order
of 40 times slower than ours.

V1. CONCLUSIONS

The computational advantage of the algorithm developed in
Section III over other direct procedures for finding an optimal
solution of (2.1) is based on two principal factors: the replace-
ment and deletion rule discussed in Section II-C, and the
ordering rule developed in Section III-D. The first rule reduces
the size of the search tree by trimming branches at the highest
possible level and by keeping an account at each level of the
subspaces that have been previously searched at that level.
The ordering rule arranges subspaces in order of increasing er-
ror. This procedure enhances the computational efficiency of
the algorithm by increasing the frequency with which lower-
error edges are encountered during the search. As indicated in
Section III-D, the use of an ordering procedure is made feasi-
ble by the fact that we are able to obtain the error of an edge
vector without actually having to compute that vector,

The lower bound developed in Section IV for the minimum
number of edges that must be computed by the algorithm pro-
vides a useful measure of the minimum amount of computa-
tional work required to find an optimal solution of (2.1). As
in any search procedure, the number of edges investigated
should be expected to grow rapidly as a function of the num-
ber and dimensionality of the patterns, as well as the error
rate. Although no theoretical bound involving these parame-
ters appears feasible, we have found in practice that the num-
ber of edges actually computed in inseparable cases in typi-
cally on the order of 10 to 30 times the lower bound. In
separable situations, the algorithm has cansistently found an
optimal solution after computing a fraction of the number of
edges required by the other direct procedures against which it
has been compared.

Finally, we point out that although all discussions have been
limited to a linear-discriminant function formulation, the con-
cepts and procedures developed in this paper are also applica-
ble to nonlinear discriminant functions by the standard pre-
processing technique of using the nonlinear functions to map
the patterns onto another space (1].
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SECTION VI

MOMENTS OF THE INTERCLASS
MAHALANOBIS DISTANCE
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Abstrace—1t is shown that the moments of the interclass Mahalanobis
distance befween elements of two d-variate Gaussian populations can be
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expressed in a simple polynomial form. The nth moment is expressible as a  and covariance matrices
polynomis! of order n whose varisble depends on the mean vectors and —-ACAT 9
eigenvalues of the covariance matrices. A closed-form solution is given for G G ®)
computing the coefficients of the polynomial expressions. C,=4 C,Ar. (10)

I. INTRODUCTION It is also easily shown that
Pattern recognition and image processing techniques based on -

the Mahalanobis distance have found wide applicability, ranging R(r.m,) = R(x,m,) (1)
from nuclear reactor surveillance and automated analysis of and
image texture data to discrimination problems in biomedical R(s.m,) = R(y.m,). (12)

observations (1}, [2], [3]}

The importance of the Mahalanobis distance classifier lies in
the fact that, under a Gaussian assumption, it is an optimal
discriminant in the Bayes sense [4). The estimation of the proba-
bility density function (pdf) of the interclass Mahalanobis dis-
tance has been a topic of active interest for a number of years
because of its direct relation to the probability of error of Bayes’
classifier (5]. For Gaussian data with equal covariance matrices,
the solution of this problem is straightforward [6]. When the
covariance matrices are not equal, however, the problem becomes
considerably more complicated, requiring the use of numerical
integration techniques for computing the pdf [7].

In many applications (c.g., cluster seeking, texture analysis,
and measuring spatial stationarity of multivariate data) it is often
of interest to compute the moments of the interclass Mahalanobis
distance without having to estimate its underlying pdf as an
intermediate step. It is shown in this paper that these moments
can be expressed directly in terms of a polynomial whose coeffi-
cients are given by a straightforward closed-form expression. The
relative simplicity of these results has important implications in
terms of implementation in a digital computer.

II. BACKGROUND

Consider two d-dimensional Gaussian vector populations { x}
and ( y} with mean vectors and covariance matricesm,,m ., C,,
and C,. respectively. The intraclass Mahalanobis distance' be-
tween any member of {x} and m, is given by the familiar
equation [1]

R(x,m.)=(x-m) C ' (x-m,), 1))
and, similarly,
R(y’b'y)-(y—my)rc;l(y—my)v (2)

\vhere,“T" indicates the transpose.

As 1ndicated in the previous section, (1) and (2) have been
applied extensively in pattern recognition. In this paper, we are
interested in characterizing the interclass Mahalanobis distance
between members of x and the mean m , which is given by

R(x.m,))=(x-m,) C (x-m,) (3)
and similarly,
R(y.m,)=(y-m)C ' (y-m,). (4)

For any nonsingular, real transformation matrix 4 it is easily
shown that if

r=Ax ()
and
s=Ay, (6)
then r and s are Gaussian random variables with mean vectors
m, = Am, (7
m,=Am, (8)

'This in in reality a squured distance. However, it has become customary to
let 1o this measure simply as the Mukalanobvs distance.
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Furthermore, as described in [6] and (16], the transformation
matrix A can be chosen so that

C=ACA =1 (13)
and
C,=ACA" =D, (14)

where [ is the identity matrix and D is a diagonal matrix with
clements y(i), i = 1,2,---,d, along the main diagonal. The ele-
ments y(i) are the cigenvalues of C, 'C,. From (13), it is noted
that the elements of r are uncorrelated which, in view of our
Gaussian assumption, implies statistical independence. The same
holds true for the elements of s.

Using (3), (11), and (14), it follows that

R(x,m,) = R(r,m,)

=(r-m,) D '(r-m,)
d
- i):|(r. - m, )y (i), (15)

where 7, and m,,, i = 1,2,- - -,d, are the components of vectors r
and m,, respectively. Since r is a Gaussian random vector and
C, = I, we have that the variable z, = (r, — m,,) is Gaussian with
mean (m,, — m,,) and unit variance. It then follows [9] that

w=z2=(r,—m,)! (16)

is a noncentral chi-square variable with density

] A‘,‘ w,(l ’u)/ze--,/z

w)=eN 17
p(w) Z, k'Z"'"Vzr(l + Zk) (n
) 2
and moment generating function
-A - M ~(1+2k)/2
¢ (1) =¢ 'EEOE(I -2r) . (18)
where
1

A =g(my, = m,) (19)

Since r,,i=1,2,---,d, are statistically independent, it follows
that the w, defined in (16) are also statistically independent.
A similar development can be carried out for R( y, m,):

R( I ’”:) - R("v mr)

- (s~ m,)rl"(s -m,)

d
=X (s-m,). (20)

i=l

The variable 2, = (s, - m,,)/ '/y(i) is Gaussian with mean
(m, -~ m,)/ Jy(i ) and unit variance. As above, the variable

- 2‘2 - L("c = mn)2 (1)

(i)

w,

« RETRRYYe . . R PRE
.

. PSR PRI
e et e " e "8 *R®, T avm . 0




has the density and moment generating function given in (17)
and (18), but A, is now given by

(22)

1 2
Al - T(i)(m" - mn’) .

III. MOMENTS OF THE INTERCLASS MAHALANOBIS
DISTANCE.

It is shown in this section that the moments about zero of w,
can be expressed in terms of A,. Once these moments have been
obtained, they will be used to obtain the moments of the inter-
class Mahalanobis distance.

A. Moments about Zero of w;
We begin the development of noting that the nth moment
about zero of w, is given by
a,(w)=E{w'} =¢["1(0) (23)

where 9{*)(0) is the nth derivative of (18) with respect to 1,
evaluated at ¢ = 0{10]. Evaluating (23) with the moment generat-
ing function given in (18) leads to the following theorem.

-
]
.
]
-
.
-
.
>
-
'
~

Theorem 1: Let a,(w;) denote the nth moment about zero of

w;. Then
au(m) = T e(n,1)X, (24)
. =0
where )
n-1
c(n,r)= 2’(',')11:1’(2j+ 1) (25)
foralln>1and0gr<n—-1,and
c(n,n)=2" (26)
foralin> 0.
Proof: From (18) and (23),
an(wi)-¢l':’l(o)
- & A g +2
s m MR gee (-0 =0 )
A fj Xk 1
- e L 2 2s —
L llCk+2-1) (28)
° ¢ 1 jk' ) A‘; n
=Y ( j? LY AI1@k+2s-1) (29)
j=0 P k=0 "t s=1
o A’, r r-m{ r n
=L X(-D () T1@m+25-1),
r=0 "’ m=0 =1

(30)

where (30) follows from (29) by the standard rule for multiplying
Taylor series. .

By a well-known formula from the calculus of finite differences
(15]

b(n,r)= io(—l)""’(;)'lf[l(ZM +25-1)

-A'ﬁ(2x+ 25-1) (1)

=1

x=0
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where A%f(x) = f(x), &'f(x) = Af(x) = f(x + 1) — f(x), and

&7(x) = 8(&7(x)) 2)
- kz':o(-l)"‘( A V{CR ) T € )

forr > 2.
Since I17_ (2x + 25 — 1) is a polynomial in x of degree n, it
follows that b(n, r) = 0 if r > n, and hence from (30) that

a,(w)= Zoc(".’)xn (34)

where
c(n,r)ysb(n,r)/rl. (35)

Now
[Tax+2-0=2((x+3)(x+3)~(s+252))
(36)
=-2"w(u~-1)---(u=n+1) (€1))

where
u=x+(2n-1)72. (33)

It follows easily by induction from (33) that
A2"u(u—-1)---(u~n+1)=2"n(n-1)---
(n=r+Du(u-1)---(u—n+r+1) (39)

when r < n, and that

ATu{u-1)--(u—n+1)=2"n (40) BAcey

Hence. (31). (37). (38). and (39) yield S

p(n.r)=2n(n-1)---(n-r+ l)"rll(Zj +1) (41) NJ

s=r e

ifn>1and0 < r<n, and (31), (37), (38), and (40) yield :..—::
b(n,n)=2"n -

@ o]
Dividing (41) by r! and (42) by n! yields (25) and (26), as desired. RN
In particular, with ¢(0,0) = 1,

" Sl

c(n,0) = o(zj +1)=(2n-1)c(n-1,0) (43) R

" —

for n > 1, and N
f("")‘-zgzz—r—r_:)l—)c(n,r—l) (44) ’

for n > 1 and 1 € r < n. The recurrence relations (43) and (44) s
enable onc to generate the tnangular array of numbers c(#, r) -
with casc. Hence one may easily calculate the polynomials a,,(w;), AR
which arc listed below for 0 < n < S -

ag(w,) =1 RS
a(w,)=1+2A, '.-
ay(w,) =3 + 12\, + 4X o
ay(w,) = 15 + 90X, + 60A + 8A!

ay(w,) =105 + 840X, + 840N2 + 224X] + 16X}

as(w,) = 945 + 9450\, + 12600A2 + SO40A) + T20A} + 32X).
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B. Moments about Zero of R
From (15) and (16),

d
R(x,m;) = ‘):l wiy ().
The nth moment about zero of R is then
d "
a,,[R(x, m,.)] - E{ R"(x.m,.)} - E{ 'E‘w,-/y(i)]

“n

The coefficients of a sum raised to the nth power are given by the
multinomial theorem [13]; that is,

e, [R(x,m,)] = 5{ —l'f_z-—fi H[ /7(")]"}-
(48)

where the summation is taken over all nonnegative values of
€, e, eysuchthate, + e, + -+« + ¢, =n.
In view of the independence of the w;s, it follows that

n! J e
e[ R m)] = (s ) T e (/)"

(49)
-,d, are given by (24), using values

(46)

where the a, (w,), i = 1,2,
of A, given by (19)
Sm

d
R(y.m,) = ¢21(S' - mn)z

d
= L wr(i), (s0)

i=1
where w, is given by (21), it follows using a similar development
that

d
a[R(y,m,)] = Z(ﬁ)ﬂ[ae,(wi)(Y(i))'.]’

. (51)

where the a, (w,), i = 1,2,- - -,d, are given by (24) using values of

A, as given i (22).
IV. SpeCIAL CaSES

In this section we consider special cases involving various
arrangements of mean vectors and covariance matrices of two
pattern populations.

Equal Covariance Matrices

When C, = C, = C, it follows from (13) and (14) that C, = C,
=] Consequemly. y(i)=1,i=1,2,---,d, and both forms of )\
((19) and (2.22)) become the same. 'ﬂus lcads to equal momcnls
via (49) and (51).

Equal Mean Vectors
When m, = m, it follows from (7) and (8) that m, = m, and,
consequently, A, - 0 in (19) and (22). Then from (24) and (’5)

(%) = e(n.0)
-T1s-1)

(52)
for both populations. Substitution of (52) into (49) and (51)

-
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yields

a,[R(x,m,)] = Z(W'—) T [ (e 0)/(x ()]

(s3)
and
d
a,[R(y,m,)] = X(W)H[(C(ﬁﬁ)v(f)"]
(54)

Equal Mean Vectors and Covariance Matrices (Intraclass
Mahalanobis Distance)

When m, =m, =m and C, = C, = C, we have only one
population and the problem reduces to computing the moments
of the intraclass Mahalanobis distance. It follows from (52) and
(53) and the fact that each y(i) = 1 (see the remarks above on
equal covariance matrices) that

a [R(X. .l)] 2-'_;1—

e,!
'lj (2i-1)-- Ii(Zi -1)
- n (d+2)), (s5)
=0

where the summation in (54) is over all e, > 0 such that ¢; + ¢,
+ -+ +e¢,=n, and (55) follows from (54) by the following
argument. By the extended binomial theorem

(=207 E (12)-200°

=0
-E(Me-)%. oo
e=Q\e=0 :
" Raising (56) to the dth power yields
(1-2x)"""
(Z(Iil(z' -1)-- I-'Il(zl'- 1))/el! e,!)x".
a=0 i=
(57)
On the other hand, the extended binomial theorem yields
can_ 5 (~d/2\(_ 5o yn
a-207"= % ("92)(-20)
- § (@Nd+2) .-".'(d *2-2) (s
n=0 ¢

Comparison of the coefficients of x" in (57) and (58) yields the
desired result.

One obscrves from (55) that the moment in question depends
only on the order of the moment and the dimension of the
pattern vectors.

V. CONCLUSION

The expressions given in (24), (25), (26), (49), and (51) lcad t0 a
straightforward algorithm for computing the moments about zero
of the interclass Mahalanobis distance. If desired, the central
moments can be obtained from these results by means of a
well-known transformation {10].
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The importance of these results is that they allow direct com-
putation of the moments without having to resort to the inter-
mediate step of obtaining the pdf which, as indicated in Section I,
is not a trivial problem in the case of unequal covariance matrices.
® The expressions for the moments were considerably simplified
in the special cases discussed in Section IV. In particular, the
intraclass Mahalanobis distance was shown to lead to expressions
which depend only on the order of the moments and the dimen-
sion of the vector populations.

ACKNOWLEDGMENT

o The authors express their appreciation to Professor Balram
Rajput, Department of Mathematics, University of Tennessee for
many helpful discussions.

REFERENCES

f1}] R. C. Gonzakz and L. C. Howington, “Machine recognition of abnormal
behavior in nuclear reactors.” /EEE Trans. Syst., Man. Cybern., vol.
: SMC-7, no. 10, pp. T17-728.
. f2) S Y. Hus. “The Mahalanobis classificr with the generalized inverse
approach for automated analysis of imagery texture data,” Comput.
Graph. Image Proc., vol. 9, no. 2, pp. 117-134, 1979.
3] R. E Pogue, “Some investigations of multivariate discrimination proce-
dures with applications to diagnosis clinical electrocardiography.” Ph.D.
| dissertation, Univ. Minnesota, Minneapolis. 1966
d [4) J. T. Tou and R. C. Gonzalez, Pattern Remgmmm Principles. Rcading,
MA: Addison-Wesley, 1974.
[5) G. T. Toussaint, *Bibliography on estimation of misclassification,” /EEE
C Trans. Inform. Theory, vol. 1T-20, no. 4, pp. 472-479, 1974.
g {6) T. W. Anderson, An Introduction 10 Multivariate Statistical Analysis.
New York: Wiley. 1962.
{7] K. Fukunaga and T. F. Krile, “Calculation of Bayes’ recognition crror
for two multivariate gaussian distributions.” JEEE Trans. Comput.. vol.
° C-18, no. 3, pp. 220-229, 1969.
{81 R. Bellman, /ntroduction to Matrix Analysis. New York: McGraw-Hill,
1970.

[9) F. A. Graybill, An Introduction to Linear Statistical Models, Vol. 1. New
York: McGraw-Hill, 1961.
110) H. Cramer. Mathematical Methods of Statistics. Princeton, NJ: Prince-
ton University, 1946,
n C Jordan Calculus of Finite Differences. New York: Chelsca Publish-

BN L EERE PRI REL R

. [12) C Bcr;e. Principles of Combinatorics. New York: Academic, 1971
[13) G. Berman and K. D. Fryer. Introduction 10 Combinatorics. New York:

Academic, 1972
. f14) B V. Gmdenko. The Theory of Probability. New York: Chelsca Pub.

lishing,
I o 151 D M. Youn( and R. T. Gregory. Survey of Numerical Mathemaucs. Vol.
5 1. Reading. MA: Addison-Wesley, 1972.

N {16) K. Fukunaga, /atroduction to Statistical Pattern Recognition. New York:
S Asademic, 1972,

0018-9472,/83/1100-1139501.00 1983 IEEE

.o - OGN N ST Y
P e e T T N D N \.‘.p"J-"- :‘.- AN o~ “'.L 2 \ ."




e S Sl L St s 4 - . T e L J v k3 - - TR > v . v
JOL IR IPRDATROR v Y A YA ANERE LA ILER SR SRS AC AT A AR AS SRS A A RO EACRARCRE

SECTION ViI

SEMI-INVARIANTS OF THE INTERCLASS
MAHALANOBIS DISTANCE

~

- - -
s, ."\‘" o

o, W

AR A A R R
‘l.'- » L) \J‘\ .




SR - 152

$34 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-14, NO. 3, MAY/JUNE 1984

Semi-mvanants of the Interclass Mahalanobis
Distance

R. C. GONZALEZ, eeLLOW, 1EEE, AND C. G. WAGNER

Abstract—A new closed-form expression for the semi-invariants of the
interclass Mahalanobis distance is derived. Typically, in the analysis of two
multivariate Gaussian populations with diflerent covariance matrices,
simultancous disgonalization of these matrices is required. The semi-in-
variants are given directly in terms of the mean vectors and inverse
covariance matrices by the results established in this correspondence. In
addition, 2 new iterative algorithm is derived for computing the moments of
the interclass Mahalanobis distance from the semi-invariants,
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L. INTRODUCTION and
Pattern recognition and image processing techniques based on s~ Ay (6)
the Mahalanobis distance have found wide applicability, ranging . . .
from auclear reactor surveillance and automated analysis of then 7 and s arc Gaussian random variables with mean vectors
image texture data to discrimination problems in biomedical m,=Am, ©)
observations {1}, {2}, [3}.
The importance of the Mahalanobis distance classifier lies in m,=Am, ®
the fact that under a Gaussian assumption it is an optimal . .
discriminant in the Bayes sense [4]. The cstimation of the proba- 20d covariance matrices
bility density function (pdf) of the interclass Mahalanobis dis- C, = ACAT T 09)
tance has been a topic of active interest for a number of years r
because of its direct relation to the probability of error of the C,=ACA" (10)
Bayes classifier [5]. For Gaussian data with equal covariance . .
. .+ matrices, the solution of this problem is straightforward [6), Itis also easily shown that
;' ‘ When the covariance matrices are not equal, however, the prob- R(r,m,) = R(x,m,) (11)
o lem becomes considerably more complicated, requiring the use of .
; numerical integration techniques for computing the pdf [7). ) and
In many applications (e.g., cluster seeking, texture analysis, R(s,m,) = R(y,m,). _(12)

and measuring spatial stationarity of multivariate data) it is often
of interest to compute descriptors based on the interclass
Mahalanobis distance. Two such descriptors are the moments
and semi-invariants. In an carlier paper, we established that the

Furthermore, as described in [6] and {16), the transformation
matrix 4 can be chosen so that

nth moment could be expressed as a polynomial of degree n and C=ACAT=1 (13)
gave a closed-form solution for computing the coefficients {17 and

This procedure, however, requires that the covariance matrices of

the two populations be simultaneously diagonalized. C,=ACA" =D (14)

The present work deals with the derivation of a closed-form
expression for the semi-invariants of the Mahalanobis distance.
This expression involves the mean vectors and inverse covariance
matrices directly and does not require the diagonalization of
these matrices. It is well known that the moments and semi-in-
variants are related by expressions that, though theoretically
simple, are quite inefficient in terms of computer implementation
[11). A new, iterative algorithm that is easily implementable in a
digital computer is presented in Section IV for computing the
moments from a given set of semi-invariants.

II. BACKGROUND

Consider two d-dimensional Gaussian vector populations { x)
and ( y} with mean vectors and covariance matrices m,, m,,
C,. and C,, respectively. The intraclass Mahalanobis distance'
between any member of {x} and m, is given by the familiar

where I is the identity matrix and D is a diagonal matrix with
clements y(i), i = 1,2,---,d, along the main diagonal.? The
clements y(i) are the cigenvalues of C;'C,. From (13), it is
noted that the elements of r axe uncorrelated which, in view of
our Gaussian assumption, implies statistical independence. The
same holds true for the elements of s.

Using (3), (11), and (14), it follows that

R(x,m,) = R(r,m,)
- (’ - m:)TD-l(’ - m:)

d 2
=X (n-m)y'(i)

iml

where r, and m,,, i = 1,2,-- -, d, are the components of vectors r
and m,, respectively. Since r is a Gaussian random vector and

(15)

equation (1} C, = I, we have that the variable z;, = (r, — m,;) is Gaussian
‘. r with mean (m,; — m,;) and unit variance. It then follows [9] that
R(xm)=(-m) G x=m) (O 1
and similarly, W=z =(r,-m,) (16)
R(y,m,)=(y- ,,,,_)TC;I( y-m), (2) is a non-central chi-square variable with density
where 7T indicates the transpose. a2 Nwlrihze-wmn
As indicated in the previous section, (1) and (2) have been p(w)=e 'Z 1+ 2k an
applied extensively in pattern recognition. In this work, we are k=0 g 120 +2k)/ 2l‘(-z—)
interested in characterizing the interclass Mahalanobis distance
between members of x and the mean at, which is given by and moment generating function
T - b\
R(x,m)=(x-m,) C '(x~m,) (3) o, (=N %:_(1 ~ 2q)"+202 (18)
and similarly, ) k=0""
where
R(y,m,)-(y—m,)rC;'(y-m,). (4) 1 ,
For any nonsingular, real transformation matrix A, it is easily A= i(m"' -m,). 19)

shown that if
&)

r=Ax

'This is in reality a squared distance. However, it has become customary to
refer 10 this measure simply as the Mahalanobis distance.

Since r,, i=1,2,---,d, are statistically independent, it follows
that the w, defined in (16) are also statistically independent.

‘Allho\;gh diagonalization is not required in our final results, (13) and (14)
are used in proving the theorem given in the next section.
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A similar development can be carried out for R(y,m,):
R(y,m,) = R(s,m,)

=(s-m)T'(s-m,)
d
-2 (- (20)
i1

The variable z, = (s, — m,;)/ ‘/y(i) is Gaussian with mean
m,;)/ /y(i) and unit variance. As above, the variable

(1)

has the density and moment generating function given in (17)
and (18), but A, is now gwcn by

2
mri) .

W=z} = y_(l-—)'(si - ’"n‘)2

A3 )( - m,). @)

III. SEMI-INVARIANTS OF THE INTERCLASS MAHALANOBIS
DISTANCE

One of the most important properties of the semi-invariants is
that the nth semi-invariant of a sum of independen' random
variables is equal to the sum of the n semi-invariants of the

individual variables [10], {11]. As will be seen in the following .

discussion, this property leads to a straightforward procedure for
computing the semi-invariants of the interclass Mahalanobis dis-
tance, using only the original mean vectors and inverse covari-
ance matrices of the given populations.

.A. Semi-invariants of w;.

We first obtain the semi-invariants of w; and then extend the
results to the general case involving R. The nth semi-invariant of
a random variable w; with moment generating function ¢, (1) is
defined [14) as

X,(w;) [ln%‘(t)],_o (23)

Use of (18) in this deﬁmuon leads to the following result involv-
ing A,.
Lemma: The nth semi-invariant of w; is given by the expres-

sion
X,(w)=2""Y(n- 1)1+ 28A\,]. (29)

Proof: From (18)
h (1) =e™™ Z ,(1

-eM(1 -21)717 2 k,u 20)7*

a4

2,)-(l+2k)/2

— -(1-2:)"/’): (lf'zr)k.

The infinite summation is recogmzed as the Taylor expansion of

As an illustration, the first five semi-invariants of w; are
Xi(w) =142,
Xy(w) =2+ 8A,;
X;(w;) = 8 + 48),;
X (w;) = 48 + 384,
Xs(w;) = 384 + 3840A,. (26)
B. Semi-invariants of R

The semi-invariants of the interclass Mahalanobis distance
R(x,m,) are given by the following theorem.

Theorem: The ath semi-invariants of R{x, m
are given, respectively, by

X[R(x,m,)] =2""'(n - 1)![1: ((¢c)’)

,) and R(y,m,}

+n(m, -

(m, - m,)]
@)

m)')rc!-l(clcy_l)"_l

and
X [R(y.m)] =2 (n - [ {(c7G,)")

m)CGC)  (my = m)]-
(28,

+n(m, -

Proof: From (15) and (16)
d
R(x,m) = Z:l w,y~1(i).

Since the nth semi-invariant of a sum of independent random
variables is the sum of the semi-invariants, and X,[w,y~!({)] =
X, (w,)y~"(i) [10], we have

d
X [R(x,m))] = L X,(w)y™"(i). (29)

im1 -
Then, from the lemma in Section III-A,

d
X,[R(x,m,)] = ):, 27" (n = 1)1 + 28A,)y7"(i)

-2 ‘(n—l)'Zv () + 2 £ Ay ).

i=1

(30)

Since y(i), i =1,2,---,d are the cxgenvalues of C.'C,, the
sum of the elgenvalues Yy "(i)fori=1,2,--,d,is the (race of

Cc-'C.)". Modifying (30) by this observatxon, and using the

fmmon of A, given in (19), yields

e*/11=20; therefore X,,[R(.r,m).)] =2""Y(n - 1)r [(C)’ 'Cx)"}
$,,(1) = eM(1 = 20) T2 ehii-2n, (25) (ms = m,)?
Use of (23) yields +2"" 'n"):l ——(—)!— (1)
- i -5 - -2 + Ai ] B
X, (w.) ar" [lne +h(-2) 1-2t}c0 The summation in (31) may be expressed as
-—[In(l ~21)"" Z —A—] (m, - m,) r
w0 (1= 2l 5 s = (m, = m) (D7) (m, = m,). ()
=27 (n = 1)! + 2", i=1
-2 - 1)1 + 2m,}. However, from (7) and (8),
This concludes the proof. (m,-m)=A(m, - m)) (33)
----- . P N I “ata -‘.'*'-‘-'-'-‘-".~'-'-‘ '.-‘:- ‘.\..".-. ~
_\.t\‘:‘-.:"‘:\':-'.-..":\‘:“-:-":.' e :.‘ ) .-“'- '.; '-l '; ; :;":a .Q '.-\;_';L.'.P ;!\:;‘:" ~ A .: :A".-_; ‘:A et e e A e .




'.'f...'. (. .’n

i=1

TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-14, NO. 3, MAY/JUNE 1984

and, from (14),
. (D-1)" = [(AC,AT)-l]"
- = gun
Expansion of the right side of this equation yields
[« gu]”

-(4T)'GU AT IG U - (AT TG U
But from (13), 4 "'(47)"! = C,, so that

(D) =N G eG)
By substituting (33) and (34) into (31) we obtain

4
Py

(34

("‘ri—"“vl)z i T =1 —1\*}
‘—_—-(M,—ﬂl’) cy (Cxcy ) (m,—m,).

1"(i)
(35)
Finally, substituting this result into (31) completes the proof of

The proof of (28) follows essentially the same line of reasoning,
with the exception that it involves y”(i) instead of y~"(i), and
the definitions of w; and A, are different, as given in (21) and
(22). From (20) and (21) and the distributive properties of the

semi-invariants stated earlier, J
xn[ R( y’mx)] - 21 X,,(w,-)y"(i),
-
and, from the lemma in Section III-A,

d

X[R(y,m,)] = }:.12""(" =M1 +2aA]y"(0).  (37)
i=

The validity of the trace portion of (28) follows directly from

the fact that y"(i) are eigenvalues of (C;'C,)". To prove the
validity of the second term on the right side ofy (28), we note that

(36)

2'n! i Ay (i) = 2" nt i (mg - mrt)zY"-l(i)- (38)
i=1 .

i=1
The summation term can be expressed as

5 (= ma) " 0) = (my = m,) AT U (= m,).
=1 . .

(39)

Expansion of the matrix D"~} (sce (14)) gives
D" ' = AC,ATAC AT --- ACA". (40)

However, from (13), A74 = C;'. Using this fact in (40) and (39)
completes the proof.

It is important to note that the semi-invariants in (27) and (28)
are given directly in terms of the original population parameters
m,, m, C,and C, and, therefore, do not require computation
of the transformation matrix 4. :

C. Special Cases

In this section we consider special cases involving various
arrangements of mean vectors and covariance matrices of two
populations.

Equal Covariance Matrices; For equal covariance matrices,
C, = C, = C, it is casily shown that (27) and (28) reduce to

X,[R(x,m,)] = X,[R(y,m,)] =2"""(n - 1)!
.[d +n(m, - m,)rC"(m, - m,)].
(4)

e gqtl;xdtan Vectors: When m, = m,, we bave from (27) and
a

X,[R(z,m,)] = 2°(n - l)g[u {(c;lc‘)-}] (42)
and

X[R(y.m)] =2 (n - Y {(€7°G,)" )] (@®)

Equal Mean Vectors and Covariance Matrices (Intraclass Maha-
lanobis Distance): In this case we are considering the same
Gaussian population and obtain the semi-invariants by letting
x=y, m . =m, C = C, in either (27) or (28). This results in
the simple expression

xn[R(x'mx)] = 2"_1(” - l)'d (“)

which depends only on the order of the semi-invariant and the
dimensionality of the vectors. :

IV. OBTAINING THE MOMENTS FROM THE
SEMI-INVARIANTS

The nth moment a, of the interclass Mahalanobis distance can
be obtained directly from the semi-invariants X;, X,,---, X, by
using the expression

n ! w a

—— 1"ne
Eal!az! e a.! ’I:Il[x’/'.] (45)
where the sum is taken over values of a; such that a, + 24,
4+ -++ +na, = n [11). Equation (45) can be used to obtain the
moments of cither w, or R, given the semi-invariants correspond-
ing to one of these two variables {11). A similar relationship exists

for computing the semi-invariants given the moments [11).
As an illustration of the above relationship we have

a = X

ay= X, + X}

ay =X, + 3%, X, + X}

ag= X, +4X,X, +3XF + 6 X[ X + X'

A direct implementation of (45) in a digital computer is
inherently inefficient, involving, among other things, the de-
termination of all n tuples of nonnegative integers (a4, -+, a,)
satisfying a, + 2a, + - - na, = n. Fortunately, there is a very
efficient recursive algorithm, described below, for computing
these moments.

Let

Z,= X,/n2" (46)
where X, is given by (27) or (28), as determined by the relevant
semi-invariant. Under this change of variables (45) become-

n! A v
oy = 2 a'l - a,! rl:ll(z Z,)

-n2T 11 (2#/a,) (47)

taken over all n tuples of nonnegative integers (a,,---,a,)
satisfying a, + 2a, + -+ +na, = n. If we define a rectangular
array B(n, k) by

]
B(n. k) =L [1(2/a), n30, k>1 (48)
r=]
taken over all k tuples of nonnegative integers (ay, -, a,)
satisfying a, + 2a, + -+ +ka, = n, then by (47)
a,=n2"8(n,n), n>31, (49)
30 that the quantities a, may easily be computed from the

.........
..............
............
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TABLEI
B(nk)0<€nglgkgl

k
\ 1 2 3

1 1 ]

z, z, z,
2in 22+ 2, Zin2+ 2,
z}/6 z}/6 + 2,2, ZY6+ 2,2, + 2,

elements lying just below the main diagonal (the main diagonal
elements of B(n, k) ate B(n — 1, n), since n > 0 and k > 1) of
the arrays B(n, k).

It is clear from (48) that

B(O,k)=1, k>»1 (50)

that
B(n,1)=2Z/nt, n>0 (51)

and that
B(n,k) = B(n,n),

The remaining elements of the array 8(n, k) are generated by the
recurrence relation

k>n>0. (52)

(n/k} :
B(n.k) = X B(n—jk,k-1)Z//! (53)

/=0

where [n/k] denotes the greatest integer < n/k. Hence the
elements in column k of the array 8(n, k) are just linear combi-
nations of certain elements in column k — 1. Equation (53) is
justified by observing that the nonnegative integral solutions of
a; + 2a, + -+- +ka, = n may be partitioned according to the
possible values j = 0,1,---,[n/k] of a,, the terms in (53) corre-
sponding to those [n/k] + 1 possible values of a,. Values of
B(n,k)for0 < n<3andl € k < 3 are listed in Table L.

V. ConcLusion

The expressions given in (27) and (28) provide a straight-for-
ward solution to the problem of computing the semi-invanants of |
the interclass Mahalanobis distance. As indicated in Section I, |
the semi-invariants are useful descriptions of the underlying -
interclass distance pdf.

Although the semi-invariants do not in general have the familiar
“physical” interpretation possessed by the momeats (e.g., spread,
skew, and curtosis), the distributive property of the semi-in-
variants resulted in a computational procedure involving only the
mean vectors and inverse covariance matrices of two populations,
without the need for the simuitaneous diagonalization required to
obtain the moments [17). The algorithm given in Section IV
provides a rather simple iterative technique for computing the
moments once the semi-invariants have been obtained via (27)
and (28).

The semi-invariants were considerably simplified in the special |

cases discussed in Section I1I-C. In particular, the semi-invariants
of the intraclass Mahalanobis distance was shown to be depen-
dent only on the order of the semi-invariants and on the dimen-
sionality of the vector populations.
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